Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/clhep/src/RandPoissonQ.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /externals/clhep/src/RandPoissonQ.cc (Version 11.3.0) and /externals/clhep/src/RandPoissonQ.cc (Version 11.0.p1)


  1 // -*- C++ -*-                                      1 // -*- C++ -*-
  2 //                                                  2 //
  3 // -------------------------------------------      3 // -----------------------------------------------------------------------
  4 //                             HEP Random           4 //                             HEP Random
  5 //                         --- RandPoissonQ --      5 //                         --- RandPoissonQ ---
  6 //                      class implementation f      6 //                      class implementation file
  7 // -------------------------------------------      7 // -----------------------------------------------------------------------
  8                                                     8 
  9 // ===========================================      9 // =======================================================================
 10 // M. Fischler    - Implemented new, much fast     10 // M. Fischler    - Implemented new, much faster table-driven algorithm
 11 //        applicable for mu < 100                  11 //        applicable for mu < 100
 12 //      - Implemented "quick()" methods, shich     12 //      - Implemented "quick()" methods, shich are the same as the
 13 //        new methods for mu < 100 and are a s     13 //        new methods for mu < 100 and are a skew-corrected gaussian
 14 //        approximation for large mu.              14 //        approximation for large mu.
 15 // M. Fischler    - Removed mean=100 from the      15 // M. Fischler    - Removed mean=100 from the table-driven set, since it
 16 //        uses a value just off the end of the     16 //        uses a value just off the end of the table.  (April 2004)
 17 // M Fischler     - put and get to/from stream     17 // M Fischler     - put and get to/from streams 12/15/04
 18 // M Fischler     - Utilize RandGaussQ rather      18 // M Fischler     - Utilize RandGaussQ rather than RandGauss, as clearly 
 19 //        intended by the inclusion of RandGau     19 //        intended by the inclusion of RandGaussQ.h.  Using RandGauss
 20 //        introduces a subtle trap in that the     20 //        introduces a subtle trap in that the state of RandPoissonQ
 21 //        can never be properly captured witho     21 //        can never be properly captured without also saveing the
 22 //        state of RandGauss!  RandGaussQ is,      22 //        state of RandGauss!  RandGaussQ is, on the other hand,
 23 //        stateless except for the engine used     23 //        stateless except for the engine used.
 24 // M Fischler   - Modified use of wrong engine     24 // M Fischler   - Modified use of wrong engine when shoot (anEngine, mean)
 25 //        is called.  This flaw was preventing     25 //        is called.  This flaw was preventing any hope of proper
 26 //        saving and restoring in the instance     26 //        saving and restoring in the instance cases.
 27 // M Fischler     - fireArray using defaultMea     27 // M Fischler     - fireArray using defaultMean 2/10/05
 28 // M Fischler       - put/get to/from streams      28 // M Fischler       - put/get to/from streams uses pairs of ulongs when
 29 //      + storing doubles avoid problems with      29 //      + storing doubles avoid problems with precision 
 30 //      4/14/05                                    30 //      4/14/05
 31 // M Fischler   - Modified use of shoot (mean) <<  31 // M Fisculer   - Modified use of shoot (mean) instead of 
 32 //        shoot(getLocalEngine(), mean) when f     32 //        shoot(getLocalEngine(), mean) when fire(mean) is called.  
 33 //        This flaw was causing bad "cross-tal     33 //        This flaw was causing bad "cross-talk" between modules
 34 //        in CMS, where one used its own engin     34 //        in CMS, where one used its own engine, and the other 
 35 //        used the static generator.  10/18/07     35 //        used the static generator.  10/18/07
 36 //                                                 36 //
 37 // ===========================================     37 // =======================================================================
 38                                                    38 
 39 #include "CLHEP/Random/RandPoissonQ.h"             39 #include "CLHEP/Random/RandPoissonQ.h"
 40 #include "CLHEP/Random/RandGaussQ.h"               40 #include "CLHEP/Random/RandGaussQ.h"
 41 #include "CLHEP/Random/DoubConv.h"                 41 #include "CLHEP/Random/DoubConv.h"
 42 #include "CLHEP/Random/Stat.h"                     42 #include "CLHEP/Random/Stat.h"
 43 #include "CLHEP/Utility/thread_local.h"            43 #include "CLHEP/Utility/thread_local.h"
 44 #include <cmath>  // for std::pow()                44 #include <cmath>  // for std::pow()
 45 #include <iostream>                                45 #include <iostream>
 46 #include <string>                                  46 #include <string>
 47 #include <vector>                                  47 #include <vector>
 48                                                    48 
 49 namespace CLHEP {                                  49 namespace CLHEP {
 50                                                    50 
 51 std::string RandPoissonQ::name() const {return     51 std::string RandPoissonQ::name() const {return "RandPoissonQ";}
 52 HepRandomEngine & RandPoissonQ::engine() {retu     52 HepRandomEngine & RandPoissonQ::engine() {return RandPoisson::engine();}
 53                                                    53 
 54 // Initialization of static data:  Note that t     54 // Initialization of static data:  Note that this is all const static data,
 55 // so that saveEngineStatus properly saves all     55 // so that saveEngineStatus properly saves all needed information. 
 56                                                    56 
 57   // The following MUST MATCH the correspondin     57   // The following MUST MATCH the corresponding values used (in
 58   // poissonTables.cc) when poissonTables.cdat     58   // poissonTables.cc) when poissonTables.cdat was created.
 59                                                    59 
 60 const double RandPoissonQ::FIRST_MU = 10;// lo     60 const double RandPoissonQ::FIRST_MU = 10;// lowest mu value in table
 61 const double RandPoissonQ::LAST_MU =  95;// hi     61 const double RandPoissonQ::LAST_MU =  95;// highest mu value
 62 const double RandPoissonQ::S = 5;        // Sp     62 const double RandPoissonQ::S = 5;        // Spacing between mu values
 63 const int RandPoissonQ::BELOW = 30;      // St     63 const int RandPoissonQ::BELOW = 30;      // Starting point for N is at mu - BELOW
 64 const int RandPoissonQ::ENTRIES = 51;    // Nu     64 const int RandPoissonQ::ENTRIES = 51;    // Number of entries in each mu row
 65                                                    65 
 66 const double RandPoissonQ::MAXIMUM_POISSON_DEV     66 const double RandPoissonQ::MAXIMUM_POISSON_DEVIATE = 2.0E9;
 67   // Careful -- this is NOT the maximum number     67   // Careful -- this is NOT the maximum number that can be held in 
 68   // a long.  It actually should be some large     68   // a long.  It actually should be some large number of sigma below
 69   // that.                                         69   // that.  
 70                                                    70 
 71   // Here comes the big (9K bytes) table, kept     71   // Here comes the big (9K bytes) table, kept in a file of 
 72   // ENTRIES * (FIRST_MU - LAST_MU + 1)/S doub     72   // ENTRIES * (FIRST_MU - LAST_MU + 1)/S doubles
 73                                                    73 
 74 static const double poissonTables [ 51 * ( (95     74 static const double poissonTables [ 51 * ( (95-10)/5 + 1 ) ] = {
 75 #include "CLHEP/Random/poissonTables.cdat"         75 #include "CLHEP/Random/poissonTables.cdat"
 76 };                                                 76 };
 77                                                    77 
 78 //                                                 78 //
 79 // Constructors and destructors:                   79 // Constructors and destructors:
 80 //                                                 80 //
 81                                                    81 
 82 RandPoissonQ::~RandPoissonQ() {                    82 RandPoissonQ::~RandPoissonQ() {
 83 }                                                  83 }
 84                                                    84 
 85 void RandPoissonQ::setupForDefaultMu() {           85 void RandPoissonQ::setupForDefaultMu() {
 86                                                    86 
 87   // The following are useful for quick approx     87   // The following are useful for quick approximation, for large mu
 88                                                    88   
 89   double sig2 = defaultMean * (.9998654 - .083     89   double sig2 = defaultMean * (.9998654 - .08346/defaultMean);
 90   sigma = std::sqrt(sig2);                         90   sigma = std::sqrt(sig2);
 91   // sigma for the Guassian which approximates     91   // sigma for the Guassian which approximates the Poisson -- naively
 92   // sqrt (defaultMean).                           92   // sqrt (defaultMean).
 93   //                                               93   //
 94   // The multiplier corrects for fact that dis     94   // The multiplier corrects for fact that discretization of the form
 95   // [gaussian+.5] increases the second moment     95   // [gaussian+.5] increases the second moment by a small amount.
 96                                                    96 
 97   double t = 1./(sig2);                            97   double t = 1./(sig2);
 98                                                    98 
 99   a2 = t/6 + t*t/324;                              99   a2 = t/6 + t*t/324;
100   a1 = std::sqrt (1-2*a2*a2*sig2);                100   a1 = std::sqrt (1-2*a2*a2*sig2);
101   a0 = defaultMean + .5 - sig2 * a2;              101   a0 = defaultMean + .5 - sig2 * a2;
102                                                   102 
103   // The formula will be a0 + a1*x + a2*x*x wh    103   // The formula will be a0 + a1*x + a2*x*x where x has 2nd moment of sigma.
104   // The coeffeicients are chosen to match the    104   // The coeffeicients are chosen to match the first THREE moments of the 
105   // true Poisson distribution.                   105   // true Poisson distribution.   
106   //                                              106   // 
107   // Actually, if the correction for discretiz    107   // Actually, if the correction for discretization were not needed, then 
108   // a2 could be taken one order higher by add    108   // a2 could be taken one order higher by adding t*t*t/5832.  However,
109   // the discretization correction is not perf    109   // the discretization correction is not perfect, leading to inaccuracy
110   // on the order to 1/mu**2, so adding a thir    110   // on the order to 1/mu**2, so adding a third term is overkill.  
111                                                   111 
112 } // setupForDefaultMu()                          112 } // setupForDefaultMu() 
113                                                   113 
114                                                   114 
115 //                                                115 //
116 // fire, quick, operator(), and shoot methods:    116 // fire, quick, operator(), and shoot methods:
117 //                                                117 //
118                                                   118 
119 long RandPoissonQ::shoot(double xm) {             119 long RandPoissonQ::shoot(double xm) {
120   return shoot(getTheEngine(), xm);               120   return shoot(getTheEngine(), xm);
121 }                                                 121 }
122                                                   122 
123 double RandPoissonQ::operator()() {               123 double RandPoissonQ::operator()() {
124   return (double) fire();                         124   return (double) fire();
125 }                                                 125 }
126                                                   126 
127 double RandPoissonQ::operator()( double mean )    127 double RandPoissonQ::operator()( double mean ) {
128   return (double) fire(mean);                     128   return (double) fire(mean);
129 }                                                 129 }
130                                                   130 
131 long RandPoissonQ::fire(double mean) {            131 long RandPoissonQ::fire(double mean) {
132   return shoot(getLocalEngine(), mean);           132   return shoot(getLocalEngine(), mean);
133 }                                                 133 }
134                                                   134 
135 long RandPoissonQ::fire() {                       135 long RandPoissonQ::fire() {
136   if ( defaultMean < LAST_MU + S ) {              136   if ( defaultMean < LAST_MU + S ) {
137     return poissonDeviateSmall ( getLocalEngin    137     return poissonDeviateSmall ( getLocalEngine(), defaultMean );
138   } else {                                        138   } else {
139     return poissonDeviateQuick ( getLocalEngin    139     return poissonDeviateQuick ( getLocalEngine(), a0, a1, a2, sigma );
140   }                                               140   }
141 } // fire()                                       141 } // fire()
142                                                   142 
143 long RandPoissonQ::shoot(HepRandomEngine* anEn    143 long RandPoissonQ::shoot(HepRandomEngine* anEngine, double mean) {
144                                                   144 
145   // The following variables, static to this m    145   // The following variables, static to this method, apply to the 
146   // last time a large mean was supplied; they    146   // last time a large mean was supplied; they obviate certain calculations
147   // if consecutive calls use the same mean.      147   // if consecutive calls use the same mean.
148                                                   148 
149   static CLHEP_THREAD_LOCAL double lastLargeMe    149   static CLHEP_THREAD_LOCAL double lastLargeMean = -1.; // Mean from previous shoot 
150           // requiring poissonDeviateQuick()      150           // requiring poissonDeviateQuick()
151   static CLHEP_THREAD_LOCAL double lastA0;        151   static CLHEP_THREAD_LOCAL double lastA0;    
152   static CLHEP_THREAD_LOCAL double lastA1;        152   static CLHEP_THREAD_LOCAL double lastA1;    
153   static CLHEP_THREAD_LOCAL double lastA2;        153   static CLHEP_THREAD_LOCAL double lastA2;    
154   static CLHEP_THREAD_LOCAL double lastSigma;     154   static CLHEP_THREAD_LOCAL double lastSigma;   
155                                                   155 
156   if ( mean < LAST_MU + S ) {                     156   if ( mean < LAST_MU + S ) {
157     return poissonDeviateSmall ( anEngine, mea    157     return poissonDeviateSmall ( anEngine, mean );
158   } else {                                        158   } else {
159     if ( mean != lastLargeMean ) {                159     if ( mean != lastLargeMean ) {
160       // Compute the coefficients defining the    160       // Compute the coefficients defining the quadratic transformation from a 
161       // Gaussian to a Poisson for this mean.     161       // Gaussian to a Poisson for this mean.  Also save these for next time.
162       double sig2 = mean * (.9998654 - .08346/    162       double sig2 = mean * (.9998654 - .08346/mean);
163       lastSigma = std::sqrt(sig2);                163       lastSigma = std::sqrt(sig2);
164       double t = 1./sig2;                         164       double t = 1./sig2;
165       lastA2 = t*(1./6.) + t*t*(1./324.);         165       lastA2 = t*(1./6.) + t*t*(1./324.);
166       lastA1 = std::sqrt (1-2*lastA2*lastA2*si    166       lastA1 = std::sqrt (1-2*lastA2*lastA2*sig2);
167       lastA0 = mean + .5 - sig2 * lastA2;         167       lastA0 = mean + .5 - sig2 * lastA2;
168     }                                             168     }
169     return poissonDeviateQuick ( anEngine, las    169     return poissonDeviateQuick ( anEngine, lastA0, lastA1, lastA2, lastSigma );
170   }                                               170   }
171                                                   171 
172 } // shoot (anEngine, mean)                       172 } // shoot (anEngine, mean)
173                                                   173 
174 void RandPoissonQ::shootArray(const int size,     174 void RandPoissonQ::shootArray(const int size, long* vect, double m) {
175   for( long* v = vect; v != vect + size; ++v )    175   for( long* v = vect; v != vect + size; ++v )
176     *v = shoot(m);                                176     *v = shoot(m);
177      // Note: We could test for m > 100, and i    177      // Note: We could test for m > 100, and if it is, precompute a0, a1, a2, 
178      // and sigma and call the appropriate for    178      // and sigma and call the appropriate form of poissonDeviateQuick.  
179      // But since those are cached anyway, not    179      // But since those are cached anyway, not much time would be saved.
180 }                                                 180 }
181                                                   181 
182 void RandPoissonQ::shootArray(HepRandomEngine* << 
183                              long* vect, doubl << 
184   for( long* v = vect; v != vect + size; ++v ) << 
185     *v = shoot(anEngine,m1);                   << 
186 }                                              << 
187                                                << 
188 void RandPoissonQ::fireArray(const int size, l    182 void RandPoissonQ::fireArray(const int size, long* vect, double m) {
189   for( long* v = vect; v != vect + size; ++v )    183   for( long* v = vect; v != vect + size; ++v )
190     *v = fire( m );                               184     *v = fire( m );
191 }                                                 185 }
192                                                   186 
193 void RandPoissonQ::fireArray(const int size, l    187 void RandPoissonQ::fireArray(const int size, long* vect) {
194   for( long* v = vect; v != vect + size; ++v )    188   for( long* v = vect; v != vect + size; ++v )
195     *v = fire( defaultMean );                     189     *v = fire( defaultMean );
196 }                                                 190 }
197                                                   191 
198                                                   192 
199 // Quick Poisson deviate algorithm used by qui    193 // Quick Poisson deviate algorithm used by quick for large mu:
200                                                   194 
201 long RandPoissonQ::poissonDeviateQuick ( HepRa    195 long RandPoissonQ::poissonDeviateQuick ( HepRandomEngine *e, double mu ) {
202                                                   196 
203   // Compute the coefficients defining the qua    197   // Compute the coefficients defining the quadratic transformation from a 
204   // Gaussian to a Poisson:                       198   // Gaussian to a Poisson:
205                                                   199 
206   double sig2 = mu * (.9998654 - .08346/mu);      200   double sig2 = mu * (.9998654 - .08346/mu);
207   double sig = std::sqrt(sig2);                   201   double sig = std::sqrt(sig2);
208   // The multiplier corrects for fact that dis    202   // The multiplier corrects for fact that discretization of the form
209   // [gaussian+.5] increases the second moment    203   // [gaussian+.5] increases the second moment by a small amount.
210                                                   204 
211   double t = 1./sig2;                             205   double t = 1./sig2;
212                                                   206 
213   double sa2 = t*(1./6.) + t*t*(1./324.);         207   double sa2 = t*(1./6.) + t*t*(1./324.);
214   double sa1 = std::sqrt (1-2*sa2*sa2*sig2);      208   double sa1 = std::sqrt (1-2*sa2*sa2*sig2);
215   double sa0 = mu + .5 - sig2 * sa2;              209   double sa0 = mu + .5 - sig2 * sa2;
216                                                   210 
217   // The formula will be sa0 + sa1*x + sa2*x*x    211   // The formula will be sa0 + sa1*x + sa2*x*x where x has sigma of sq.
218   // The coeffeicients are chosen to match the    212   // The coeffeicients are chosen to match the first THREE moments of the 
219   // true Poisson distribution.                   213   // true Poisson distribution.
220                                                   214 
221   return poissonDeviateQuick ( e, sa0, sa1, sa    215   return poissonDeviateQuick ( e, sa0, sa1, sa2, sig ); 
222 }                                                 216 } 
223                                                   217 
224                                                   218 
225 long RandPoissonQ::poissonDeviateQuick ( HepRa    219 long RandPoissonQ::poissonDeviateQuick ( HepRandomEngine *e, 
226     double A0, double A1, double A2, double si    220     double A0, double A1, double A2, double sig) {
227 //                                                221 //
228 // Quick Poisson deviate algorithm used by qui    222 // Quick Poisson deviate algorithm used by quick for large mu:
229 //                                                223 //
230 // The principle:  For very large mu, a poisso    224 // The principle:  For very large mu, a poisson distribution can be approximated
231 // by a gaussian: return the integer part of m    225 // by a gaussian: return the integer part of mu + .5 + g where g is a unit 
232 // normal.  However, this yelds a miserable ap    226 // normal.  However, this yelds a miserable approximation at values as
233 // "large" as 100.  The primary problem is tha    227 // "large" as 100.  The primary problem is that the poisson distribution is 
234 // supposed to have a skew of 1/mu**2, and the    228 // supposed to have a skew of 1/mu**2, and the zero skew of the Guassian 
235 // leads to errors of order as big as 1/mu**2.    229 // leads to errors of order as big as 1/mu**2.
236 //                                                230 //
237 // We substitute for the gaussian a quadratic     231 // We substitute for the gaussian a quadratic function of that gaussian random.
238 // The expression looks very nearly like mu +     232 // The expression looks very nearly like mu + .5 - 1/6 + g + g**2/(6*mu).  
239 // The small positive quadratic term causes th    233 // The small positive quadratic term causes the resulting variate to have 
240 // a positive skew; the -1/6 constant term is     234 // a positive skew; the -1/6 constant term is there to correct for this bias 
241 // in the mean.  By adjusting these two and th    235 // in the mean.  By adjusting these two and the linear term, we can match the
242 // first three moments to high accuracy in 1/m    236 // first three moments to high accuracy in 1/mu.
243 //                                                237 //
244 // The sigma used is not precisely sqrt(mu) si    238 // The sigma used is not precisely sqrt(mu) since a rounded-off Gaussian
245 // has a second moment which is slightly large    239 // has a second moment which is slightly larger than that of the Gaussian.  
246 // To compensate, sig is multiplied by a facto    240 // To compensate, sig is multiplied by a factor which is slightly less than 1.
247                                                   241 
248   //  double g = RandGauss::shootQuick( e );      242   //  double g = RandGauss::shootQuick( e );   // TEMPORARY MOD:
249   double g = RandGaussQ::shoot( e );   // Unit    243   double g = RandGaussQ::shoot( e );   // Unit normal
250   g *= sig;                                       244   g *= sig;
251   double p = A2*g*g + A1*g + A0;                  245   double p = A2*g*g + A1*g + A0;
252   if ( p < 0 ) return 0;  // Shouldn't ever po    246   if ( p < 0 ) return 0;  // Shouldn't ever possibly happen since 
253         // mean should not be less than 100, b    247         // mean should not be less than 100, but
254         // we check due to paranoia.              248         // we check due to paranoia.
255   if ( p > MAXIMUM_POISSON_DEVIATE ) p = MAXIM    249   if ( p > MAXIMUM_POISSON_DEVIATE ) p = MAXIMUM_POISSON_DEVIATE;
256                                                   250 
257   return long(p);                                 251   return long(p);
258                                                   252 
259 } // poissonDeviateQuick ()                       253 } // poissonDeviateQuick ()
260                                                   254 
261                                                   255 
262                                                   256 
263 long RandPoissonQ::poissonDeviateSmall (HepRan    257 long RandPoissonQ::poissonDeviateSmall (HepRandomEngine * e, double mean) {
264   long N1;                                        258   long N1;
265   long N2;                                        259   long N2;
266   // The following are for later use to form a    260   // The following are for later use to form a secondary random s:
267   double rRange;      // This will hold the in    261   double rRange;      // This will hold the interval between cdf for the
268           // computed N1 and cdf for N1+1.        262           // computed N1 and cdf for N1+1.
269   double rRemainder = 0; // This will hold the    263   double rRemainder = 0; // This will hold the length into that interval.
270                                                   264 
271   // Coming in, mean should not be more than L    265   // Coming in, mean should not be more than LAST_MU + S.  However, we will 
272   // be paranoid and test for this:               266   // be paranoid and test for this:
273                                                   267 
274   if ( mean > LAST_MU + S ) {                     268   if ( mean > LAST_MU + S ) {
275     return RandPoisson::shoot(e, mean);           269     return RandPoisson::shoot(e, mean);
276   }                                               270   }
277                                                   271 
278   if (mean <= 0) {                                272   if (mean <= 0) {
279     return 0;     // Perhaps we ought to balk     273     return 0;     // Perhaps we ought to balk harder here!
280   }                                               274   }
281                                                   275 
282   // >>> 1 <<<                                    276   // >>> 1 <<< 
283   //  Generate the first random, which we alwa    277   //  Generate the first random, which we always will need.
284                                                   278 
285   double r = e->flat();                           279   double r = e->flat();
286                                                   280 
287   // >>> 2 <<<                                    281   // >>> 2 <<< 
288   //  For small mean, below the start of the t    282   //  For small mean, below the start of the tables, 
289   //  do the series for cdf directly.             283   //  do the series for cdf directly.  
290                                                   284 
291   // In this case, since we know the series wi    285   // In this case, since we know the series will terminate relatively quickly, 
292   // almost alwaye use a precomputed 1/N array    286   // almost alwaye use a precomputed 1/N array without fear of overrunning it.
293                                                   287 
294   static const double oneOverN[50] =              288   static const double oneOverN[50] = 
295   {    0,   1.,    1/2.,  1/3.,  1/4.,  1/5.,     289   {    0,   1.,    1/2.,  1/3.,  1/4.,  1/5.,  1/6.,  1/7.,  1/8.,  1/9., 
296    1/10.,  1/11.,  1/12., 1/13., 1/14., 1/15.,    290    1/10.,  1/11.,  1/12., 1/13., 1/14., 1/15., 1/16., 1/17., 1/18., 1/19., 
297    1/20.,  1/21.,  1/22., 1/23., 1/24., 1/25.,    291    1/20.,  1/21.,  1/22., 1/23., 1/24., 1/25., 1/26., 1/27., 1/28., 1/29.,
298    1/30.,  1/31.,  1/32., 1/33., 1/34., 1/35.,    292    1/30.,  1/31.,  1/32., 1/33., 1/34., 1/35., 1/36., 1/37., 1/38., 1/39., 
299    1/40.,  1/41.,  1/42., 1/43., 1/44., 1/45.,    293    1/40.,  1/41.,  1/42., 1/43., 1/44., 1/45., 1/46., 1/47., 1/48., 1/49. };
300                                                   294 
301                                                   295 
302   if ( mean < FIRST_MU ) {                        296   if ( mean < FIRST_MU ) {
303                                                   297 
304     long N = 0;                                   298     long N = 0;
305     double term = std::exp(-mean);                299     double term = std::exp(-mean);
306     double cdf = term;                            300     double cdf = term;
307                                                   301 
308     if ( r < (1 - 1.0E-9) ) {                     302     if ( r < (1 - 1.0E-9) ) {
309       //                                          303       //
310       // **** This is a normal path: ****         304       // **** This is a normal path: ****
311       //                                          305       //
312       // Except when r is very close to 1, it     306       // Except when r is very close to 1, it is certain that we will exceed r 
313       // before the 30-th term in the series,     307       // before the 30-th term in the series, so a simple while loop is OK.
314       const double* oneOverNptr = oneOverN;       308       const double* oneOverNptr = oneOverN;
315       while( cdf <= r ) {                         309       while( cdf <= r ) {
316         N++ ;                                     310         N++ ;  
317         oneOverNptr++;                            311         oneOverNptr++;
318         term *= ( mean * (*oneOverNptr) );        312         term *= ( mean * (*oneOverNptr) );
319         cdf  += term;                             313         cdf  += term;
320       }                                           314       }
321       return N;                                   315       return N;
322       //                                          316       //
323       // **** ****                                317       // **** ****
324       //                                          318       //
325     } else { // r is almost 1...                  319     } else { // r is almost 1...
326       // For r very near to 1 we would have to    320       // For r very near to 1 we would have to check that we don't fall
327       // off the end of the table of 1/N.  Sin    321       // off the end of the table of 1/N.  Since this is very rare, we just
328       // ignore the table and do the identical    322       // ignore the table and do the identical while loop, using explicit 
329       // division.                                323       // division.
330       double cdf0;                                324       double cdf0;
331       while ( cdf <= r ) {                        325       while ( cdf <= r ) {
332         N++ ;                                     326         N++ ;  
333         term *= ( mean / N );                     327         term *= ( mean / N );
334         cdf0 = cdf;                               328         cdf0 = cdf;
335         cdf  += term;                             329         cdf  += term;
336   if (cdf == cdf0) break; // Can't happen, but    330   if (cdf == cdf0) break; // Can't happen, but just in case...
337       }                                           331       }
338       return N;                                   332       return N;
339     } // end of if ( r compared to (1 - 1.0E-9    333     } // end of if ( r compared to (1 - 1.0E-9) )
340                                                   334 
341   } // End of the code for mean < FIRST_MU        335   } // End of the code for mean < FIRST_MU
342                                                   336 
343   // >>> 3 <<<                                    337   // >>> 3 <<< 
344   //  Find the row of the tables corresponding    338   //  Find the row of the tables corresponding to the highest tabulated mu
345   //  which is no greater than our actual mean    339   //  which is no greater than our actual mean.
346                                                   340 
347   int rowNumber = int((mean - FIRST_MU)/S);       341   int rowNumber = int((mean - FIRST_MU)/S);
348   const double * cdfs = &poissonTables [rowNum    342   const double * cdfs = &poissonTables [rowNumber*ENTRIES]; 
349   double mu = FIRST_MU + rowNumber*S;             343   double mu = FIRST_MU + rowNumber*S;
350   double deltaMu = mean - mu;                     344   double deltaMu = mean - mu;
351   int Nmin = int(mu - BELOW);                     345   int Nmin = int(mu - BELOW);
352   if (Nmin < 1) Nmin = 1;                         346   if (Nmin < 1) Nmin = 1;
353   int Nmax = Nmin + (ENTRIES - 1);                347   int Nmax = Nmin + (ENTRIES - 1);
354                                                   348 
355                                                   349 
356   // >>> 4 <<<                                    350   // >>> 4 <<< 
357   //  If r is less that the smallest entry in     351   //  If r is less that the smallest entry in the row, then 
358   //  generate the deviate directly from the s    352   //  generate the deviate directly from the series.  
359                                                   353 
360   if ( r < cdfs[0] ) {                            354   if ( r < cdfs[0] ) {
361                                                   355   
362     // In this case, we are tempted to use the    356     // In this case, we are tempted to use the actual mean, and not 
363     // generate a second deviate to account fo    357     // generate a second deviate to account for the leftover part mean - mu.
364     // That would be an error, generating a di    358     // That would be an error, generating a distribution with enough excess
365     // at Nmin + (mean-mu)/2 to be detectable     359     // at Nmin + (mean-mu)/2 to be detectable in 4,000,000 trials.
366                                                   360 
367     // Since this case is very rare (never mor    361     // Since this case is very rare (never more than .2% of the r values)
368     // and can happen where N will be large (u    362     // and can happen where N will be large (up to 65 for the mu=95 row)
369     // we use explicit division so as to avoid    363     // we use explicit division so as to avoid having to worry about running
370     // out of oneOverN table.                     364     // out of oneOverN table.
371                                                   365 
372     long N = 0;                                   366     long N = 0;
373     double term = std::exp(-mu);                  367     double term = std::exp(-mu);
374     double cdf = term;                            368     double cdf = term;
375     double cdf0;                                  369     double cdf0;
376                                                   370 
377     while(cdf <= r) {                             371     while(cdf <= r) {
378         N++ ;                                     372         N++ ;  
379         term *= ( mu / N );                       373         term *= ( mu / N );
380         cdf0 = cdf;                               374         cdf0 = cdf;
381         cdf  += term;                             375         cdf  += term;
382   if (cdf == cdf0) break; // Can't happen, but    376   if (cdf == cdf0) break; // Can't happen, but just in case...
383     }                                             377     }
384     N1 = N;                                       378     N1 = N;
385     // std::cout << r << "   " << N << "   ";     379     // std::cout << r << "   " << N << "   ";
386     // DBG_small = true;                          380     // DBG_small = true;
387     rRange = 0;   // In this case there is alw    381     rRange = 0;   // In this case there is always a second r needed
388                                                   382 
389   } // end of small-r case                        383   } // end of small-r case
390                                                   384 
391                                                   385 
392   // >>> 5 <<<                                    386   // >>> 5 <<< 
393   //  Assuming r lies within the scope of the     387   //  Assuming r lies within the scope of the row for this mu, find the 
394   //  largest entry not greater than r.  N1 is    388   //  largest entry not greater than r.  N1 is the N corresponding to the 
395   //  index a.                                    389   //  index a.
396                                                   390 
397   else if ( r < cdfs[ENTRIES-1] ) {     // r i    391   else if ( r < cdfs[ENTRIES-1] ) {     // r is also >= cdfs[0]
398                                                   392 
399     //                                            393     //
400     // **** This is the normal code path ****     394     // **** This is the normal code path ****
401     //                                            395     //
402                                                   396 
403     int a = 0;                  // Highest val    397     int a = 0;                  // Highest value of index such that cdfs[a]
404         // is known NOT to be greater than r.     398         // is known NOT to be greater than r.
405     int b = ENTRIES - 1;  // Lowest value of i    399     int b = ENTRIES - 1;  // Lowest value of index such that cdfs[b] is
406         // known to exeed r.                      400         // known to exeed r.
407                                                   401 
408     while (b != (a+1) ) {                         402     while (b != (a+1) ) {
409       int c = (a+b+1)>>1;                         403       int c = (a+b+1)>>1;
410       if (r > cdfs[c]) {                          404       if (r > cdfs[c]) {
411         a = c;                                    405         a = c;
412       } else {                                    406       } else {
413         b = c;                                    407         b = c;
414       }                                           408       }
415     }                                             409     }
416                                                   410 
417     N1 = Nmin + a;                                411     N1 = Nmin + a;
418     rRange = cdfs[a+1] - cdfs[a];                 412     rRange = cdfs[a+1] - cdfs[a];
419     rRemainder = r - cdfs[a];                     413     rRemainder = r - cdfs[a];
420                                                   414 
421     //                                            415     //
422     // **** ****                                  416     // **** ****
423     //                                            417     //
424                                                   418 
425   } // end of medium-r (normal) case              419   } // end of medium-r (normal) case
426                                                   420 
427                                                   421 
428   // >>> 6 <<<                                    422   // >>> 6 <<< 
429   //  If r exceeds the greatest entry in the t    423   //  If r exceeds the greatest entry in the table for this mu, then start 
430   //  from that cdf, and use the series to com    424   //  from that cdf, and use the series to compute from there until r is 
431   //  exceeded.                                   425   //  exceeded.  
432                                                   426 
433   else { //     if ( r >= cdfs[ENTRIES-1] ) {     427   else { //     if ( r >= cdfs[ENTRIES-1] ) {
434                                                   428  
435     // Here, division must be done explicitly,    429     // Here, division must be done explicitly, and we must also protect against
436     // roundoff preventing termination.           430     // roundoff preventing termination.
437                                                   431 
438   //                                              432   // 
439   //+++ cdfs[ENTRIES-1] is exp(-mu) sum (mu**m    433   //+++ cdfs[ENTRIES-1] is exp(-mu) sum (mu**m/m! , m=0 to Nmax) 
440   //+++ (where Nmax = mu - BELOW + ENTRIES - 1    434   //+++ (where Nmax = mu - BELOW + ENTRIES - 1)
441   //+++ cdfs[ENTRIES-1]-cdfs[ENTRIES-2] is exp    435   //+++ cdfs[ENTRIES-1]-cdfs[ENTRIES-2] is exp(-mu) mu**(Nmax)/(Nmax)!
442   //+++ If the sum up to k-1 <= r < sum up to     436   //+++ If the sum up to k-1 <= r < sum up to k, then N = k-1
443   //+++ Consider k = Nmax in the above stateme    437   //+++ Consider k = Nmax in the above statement:
444   //+++ If cdfs[ENTRIES-2] <= r < cdfs[ENTRIES    438   //+++ If cdfs[ENTRIES-2] <= r < cdfs[ENTRIES-1], N would be Nmax-1 
445   //+++ But here r >= cdfs[ENTRIES-1] so N >=     439   //+++ But here r >= cdfs[ENTRIES-1] so N >= Nmax
446   //                                              440   //
447                                                   441 
448   // Erroneous:                                   442   // Erroneous:
449   //+++ cdfs[ENTRIES-1] is exp(-mu) sum (mu**m    443   //+++ cdfs[ENTRIES-1] is exp(-mu) sum (mu**m/m! , m=0 to Nmax-1) 
450   //+++ cdfs[ENTRIES-1]-cdfs[ENTRIES-2] is exp    444   //+++ cdfs[ENTRIES-1]-cdfs[ENTRIES-2] is exp(-mu) mu**(Nmax-1)/(Nmax-1)!
451   //+++ If a sum up to k-1 <= r < sum up to k,    445   //+++ If a sum up to k-1 <= r < sum up to k, then N = k-1
452   //+++ So if cdfs[ENTRIES-1] were > r, N woul    446   //+++ So if cdfs[ENTRIES-1] were > r, N would be Nmax-1 (or less)
453   //+++ But here r >= cdfs[ENTRIES-1] so N >=     447   //+++ But here r >= cdfs[ENTRIES-1] so N >= Nmax
454   //                                              448   //
455                                                   449 
456     //  std::cout << "r = " << r << " mu = " <    450     //  std::cout << "r = " << r << " mu = " << mu << "\n";
457     long N = Nmax -1;                             451     long N = Nmax -1;
458     double cdf = cdfs[ENTRIES-1];                 452     double cdf = cdfs[ENTRIES-1];
459     double term = cdf - cdfs[ENTRIES-2];          453     double term = cdf - cdfs[ENTRIES-2];
460     double cdf0;                                  454     double cdf0;
461     while(cdf <= r) {                             455     while(cdf <= r) {
462         N++ ;                                     456         N++ ;  
463     //  std::cout << "  N " << N << " term " <    457     //  std::cout << "  N " << N << " term " << 
464     //  term << " cdf " << cdf << "\n";           458     //  term << " cdf " << cdf << "\n";
465         term *= ( mu / N );                       459         term *= ( mu / N );
466   cdf0  = cdf;                                    460   cdf0  = cdf;
467         cdf  += term;                             461         cdf  += term;
468   if (cdf == cdf0) break; // If term gets so s    462   if (cdf == cdf0) break; // If term gets so small cdf stops increasing,
469         // terminate using that value of N sin    463         // terminate using that value of N since we
470         // would never reach r.                   464         // would never reach r.
471     }                                             465     }
472     N1 = N;                                       466     N1 = N;
473     rRange = 0;   // We can't validly omit the    467     rRange = 0;   // We can't validly omit the second true random
474                                                   468 
475   //      N = Nmax -1;                            469   //      N = Nmax -1;
476   //      cdf = cdfs[ENTRIES-1];                  470   //      cdf = cdfs[ENTRIES-1];
477   //      term = cdf - cdfs[ENTRIES-2];           471   //      term = cdf - cdfs[ENTRIES-2];
478   //      for (int isxz=0; isxz < 100; isxz++)    472   //      for (int isxz=0; isxz < 100; isxz++) {
479   //          N++ ;                               473   //          N++ ;  
480   //          term *= ( mu / N );                 474   //          term *= ( mu / N );
481   //    cdf0  = cdf;                              475   //    cdf0  = cdf;
482   //          cdf  += term;                       476   //          cdf  += term;
483   //      }                                       477   //      }
484   //      std::cout.precision(20);                478   //      std::cout.precision(20);
485   //      std::cout << "Final sum is " << cdf     479   //      std::cout << "Final sum is " << cdf << "\n";
486                                                   480 
487   } // end of large-r case                        481   } // end of large-r case
488                                                   482 
489                                                   483 
490                                                   484 
491   // >>> 7 <<<                                    485   // >>> 7 <<< 
492   //  Form a second random, s, based on the po    486   //  Form a second random, s, based on the position of r within the range
493   //  of this table entry to the next entry.      487   //  of this table entry to the next entry.  
494                                                   488 
495   // However, if this range is very small, the    489   // However, if this range is very small, then we lose too many bits of
496   // randomness.  In that situation, we genera    490   // randomness.  In that situation, we generate a second random for s.
497                                                   491 
498   double s;                                       492   double s;
499                                                   493 
500   static const double MINRANGE = .01;   // Sac    494   static const double MINRANGE = .01;   // Sacrifice up to two digits of 
501                 // randomness when using r to     495                 // randomness when using r to produce
502           // a second random s.  Leads to up t    496           // a second random s.  Leads to up to
503           // .09 extra randoms each time.         497           // .09 extra randoms each time.
504                                                   498 
505   if ( rRange > MINRANGE ) {                      499   if ( rRange > MINRANGE ) {
506     //                                            500     //
507     // **** This path taken 90% of the time **    501     // **** This path taken 90% of the time ****
508     //                                            502     //
509     s = rRemainder / rRange;                      503     s = rRemainder / rRange;
510   } else {                                        504   } else {
511     s = e->flat();  // extra true random neede    505     s = e->flat();  // extra true random needed about one time in 10.
512   }                                               506   }
513                                                   507 
514   // >>> 8 <<<                                    508   // >>> 8 <<< 
515   //  Use the direct summation method to form     509   //  Use the direct summation method to form a second poisson deviate N2 
516   //  from deltaMu and s.                         510   //  from deltaMu and s.
517                                                   511 
518   N2 = 0;                                         512   N2 = 0;
519   double term = std::exp(-deltaMu);               513   double term = std::exp(-deltaMu);
520   double cdf = term;                              514   double cdf = term;
521                                                   515 
522   if ( s < (1 - 1.0E-10) ) {                      516   if ( s < (1 - 1.0E-10) ) {
523       //                                          517       //
524       // This is the normal path:                 518       // This is the normal path:
525       //                                          519       //
526       const double* oneOverNptr = oneOverN;       520       const double* oneOverNptr = oneOverN;
527       while( cdf <= s ) {                         521       while( cdf <= s ) {
528         N2++ ;                                    522         N2++ ;  
529         oneOverNptr++;                            523         oneOverNptr++;
530         term *= ( deltaMu * (*oneOverNptr) );     524         term *= ( deltaMu * (*oneOverNptr) );
531         cdf  += term;                             525         cdf  += term;
532       }                                           526       }
533   } else { // s is almost 1...                    527   } else { // s is almost 1...
534       while( cdf <= s ) {                         528       while( cdf <= s ) {
535         N2++ ;                                    529         N2++ ;  
536         term *= ( deltaMu / N2 );                 530         term *= ( deltaMu / N2 );
537         cdf  += term;                             531         cdf  += term;
538       }                                           532       }
539   } // end of if ( s compared to (1 - 1.0E-10)    533   } // end of if ( s compared to (1 - 1.0E-10) )
540                                                   534 
541   // >>> 9 <<<                                    535   // >>> 9 <<< 
542   //  The result is the sum of those two devia    536   //  The result is the sum of those two deviates
543                                                   537 
544     // if (DBG_small) {                           538     // if (DBG_small) {
545     //   std::cout << N2 << "   " << N1+N2 <<     539     //   std::cout << N2 << "   " << N1+N2 << "\n";
546     //   DBG_small = false;                       540     //   DBG_small = false;
547     // }                                          541     // }
548                                                   542 
549   return N1 + N2;                                 543   return N1 + N2;
550                                                   544 
551 } // poissonDeviate()                             545 } // poissonDeviate()
552                                                   546 
553 std::ostream & RandPoissonQ::put ( std::ostrea    547 std::ostream & RandPoissonQ::put ( std::ostream & os ) const {
554   long pr=os.precision(20);                    << 548   int pr=os.precision(20);
555   std::vector<unsigned long> t(2);                549   std::vector<unsigned long> t(2);
556   os << " " << name() << "\n";                    550   os << " " << name() << "\n";
557   os << "Uvec" << "\n";                           551   os << "Uvec" << "\n";
558   t = DoubConv::dto2longs(a0);                    552   t = DoubConv::dto2longs(a0);
559   os << a0 << " " << t[0] << " " << t[1] << "\    553   os << a0 << " " << t[0] << " " << t[1] << "\n";
560   t = DoubConv::dto2longs(a1);                    554   t = DoubConv::dto2longs(a1);
561   os << a1 << " " << t[0] << " " << t[1] << "\    555   os << a1 << " " << t[0] << " " << t[1] << "\n";
562   t = DoubConv::dto2longs(a2);                    556   t = DoubConv::dto2longs(a2);
563   os << a2 << " " << t[0] << " " << t[1] << "\    557   os << a2 << " " << t[0] << " " << t[1] << "\n";
564   t = DoubConv::dto2longs(sigma);                 558   t = DoubConv::dto2longs(sigma);
565   os << sigma << " " << t[0] << " " << t[1] <<    559   os << sigma << " " << t[0] << " " << t[1] << "\n";
566   RandPoisson::put(os);                           560   RandPoisson::put(os);
567   os.precision(pr);                               561   os.precision(pr);
568   return os;                                      562   return os;
569 #ifdef REMOVED                                    563 #ifdef REMOVED
570   int pr=os.precision(20);                        564   int pr=os.precision(20);
571   os << " " << name() << "\n";                    565   os << " " << name() << "\n";
572   os << a0 << " " << a1 << " " << a2 << "\n";     566   os << a0 << " " << a1 << " " << a2 << "\n";
573   os << sigma << "\n";                            567   os << sigma << "\n";
574   RandPoisson::put(os);                           568   RandPoisson::put(os);
575   os.precision(pr);                               569   os.precision(pr);
576   return os;                                      570   return os;
577 #endif                                            571 #endif
578 }                                                 572 }
579                                                   573 
580 std::istream & RandPoissonQ::get ( std::istrea    574 std::istream & RandPoissonQ::get ( std::istream & is ) {
581   std::string inName;                             575   std::string inName;
582   is >> inName;                                   576   is >> inName;
583   if (inName != name()) {                         577   if (inName != name()) {
584     is.clear(std::ios::badbit | is.rdstate());    578     is.clear(std::ios::badbit | is.rdstate());
585     std::cerr << "Mismatch when expecting to r    579     std::cerr << "Mismatch when expecting to read state of a "
586             << name() << " distribution\n"        580             << name() << " distribution\n"
587         << "Name found was " << inName            581         << "Name found was " << inName
588         << "\nistream is left in the badbit st    582         << "\nistream is left in the badbit state\n";
589     return is;                                    583     return is;
590   }                                               584   }
591   if (possibleKeywordInput(is, "Uvec", a0)) {     585   if (possibleKeywordInput(is, "Uvec", a0)) {
592     std::vector<unsigned long> t(2);              586     std::vector<unsigned long> t(2);
593     is >> a0 >> t[0] >> t[1]; a0 = DoubConv::l    587     is >> a0 >> t[0] >> t[1]; a0 = DoubConv::longs2double(t); 
594     is >> a1 >> t[0] >> t[1]; a1 = DoubConv::l    588     is >> a1 >> t[0] >> t[1]; a1 = DoubConv::longs2double(t); 
595     is >> a2 >> t[0] >> t[1]; a2 = DoubConv::l    589     is >> a2 >> t[0] >> t[1]; a2 = DoubConv::longs2double(t); 
596     is >> sigma >> t[0] >> t[1]; sigma = DoubC    590     is >> sigma >> t[0] >> t[1]; sigma = DoubConv::longs2double(t); 
597     RandPoisson::get(is);                         591     RandPoisson::get(is);
598     return is;                                    592     return is;
599   }                                               593   }
600   // is >> a0 encompassed by possibleKeywordIn    594   // is >> a0 encompassed by possibleKeywordInput
601   is >> a1 >> a2 >> sigma;                        595   is >> a1 >> a2 >> sigma;
602   RandPoisson::get(is);                           596   RandPoisson::get(is);
603   return is;                                      597   return is;
604 }                                                 598 }
605                                                   599 
606 }  // namespace CLHEP                             600 }  // namespace CLHEP
607                                                   601 
608                                                   602