Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/clhep/src/RandBinomial.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /externals/clhep/src/RandBinomial.cc (Version 11.3.0) and /externals/clhep/src/RandBinomial.cc (Version 9.2.p3)


  1 // -*- C++ -*-                                      1 
  2 //                                                
  3 // -------------------------------------------    
  4 //                             HEP Random         
  5 //                        --- RandBinomial ---    
  6 //                      class implementation f    
  7 // -------------------------------------------    
  8                                                   
  9 // ===========================================    
 10 // John Marraffino - Created: 12th May 1998       
 11 // M Fischler     - put and get to/from stream    
 12 // M Fischler       - put/get to/from streams     
 13 //      + storing doubles avoid problems with     
 14 //      4/14/05                                   
 15 //                                                
 16 // ===========================================    
 17                                                   
 18 #include "CLHEP/Random/RandBinomial.h"            
 19 #include "CLHEP/Random/DoubConv.h"                
 20 #include "CLHEP/Utility/thread_local.h"           
 21 #include <algorithm>  // for min() and max()      
 22 #include <cmath>  // for exp()                    
 23 #include <iostream>                               
 24 #include <vector>                                 
 25                                                   
 26 namespace CLHEP {                                 
 27                                                   
 28 std::string RandBinomial::name() const {return    
 29 HepRandomEngine & RandBinomial::engine() {retu    
 30                                                   
 31 RandBinomial::~RandBinomial() {                   
 32 }                                                 
 33                                                   
 34 double RandBinomial::shoot( HepRandomEngine *a    
 35                                                   
 36   return genBinomial( anEngine, n, p );           
 37 }                                                 
 38                                                   
 39 double RandBinomial::shoot( long n, double p )    
 40   HepRandomEngine *anEngine = HepRandom::getTh    
 41   return genBinomial( anEngine, n, p );           
 42 }                                                 
 43                                                   
 44 double RandBinomial::fire( long n, double p )     
 45   return genBinomial( localEngine.get(), n, p     
 46 }                                                 
 47                                                   
 48 void RandBinomial::shootArray( const int size,    
 49                             long n, double p )    
 50 {                                                 
 51   for( double* v = vect; v != vect+size; ++v )    
 52     *v = shoot(n,p);                              
 53 }                                                 
 54                                                   
 55 void RandBinomial::shootArray( HepRandomEngine    
 56                             const int size, do    
 57                             long n, double p )    
 58 {                                                 
 59   for( double* v = vect; v != vect+size; ++v )    
 60     *v = shoot(anEngine,n,p);                     
 61 }                                                 
 62                                                   
 63 void RandBinomial::fireArray( const int size,     
 64 {                                                 
 65   for( double* v = vect; v != vect+size; ++v )    
 66     *v = fire(defaultN,defaultP);                 
 67 }                                                 
 68                                                   
 69 void RandBinomial::fireArray( const int size,     
 70                            long n, double p )     
 71 {                                                 
 72   for( double* v = vect; v != vect+size; ++v )    
 73     *v = fire(n,p);                               
 74 }                                                 
 75                                                   
 76 /*********************************************    
 77  *                                                
 78  *  StirlingCorrection()                          
 79  *                                                
 80  *  Correction term of the Stirling approximat    
 81  *  (series in 1/k, or table values for small     
 82  *  with long int parameter k                     
 83  *                                                
 84  *********************************************    
 85  *                                                
 86  * log k! = (k + 1/2)log(k + 1) - (k + 1) + (1    
 87  *          StirlingCorrection(k + 1)             
 88  *                                                
 89  * log k! = (k + 1/2)log(k)     -  k      + (1    
 90  *          StirlingCorrection(k)                 
 91  *                                                
 92  *********************************************    
 93                                                   
 94 static double StirlingCorrection(long int k)      
 95 {                                                 
 96   #define   C1               8.333333333333333    
 97   #define   C3              -2.777777777777777    
 98   #define   C5               7.936507936507936    
 99   #define   C7              -5.952380952380952    
100                                                   
101   static const double  c[31] = {   0.0,           
102            8.106146679532726e-02, 4.1340695955    
103            2.767792568499834e-02, 2.0790672103    
104            1.664469118982119e-02, 1.3876128823    
105            1.189670994589177e-02, 1.0411265261    
106            9.255462182712733e-03, 8.3305634333    
107            7.573675487951841e-03, 6.9428401072    
108            6.408994188004207e-03, 5.9513701127    
109            5.554733551962801e-03, 5.2076559196    
110            4.901395948434738e-03, 4.6291537493    
111            4.385560249232324e-03, 4.1663196919    
112            3.967954218640860e-03, 3.7876180684    
113            3.622960224683090e-03, 3.4720213829    
114            3.333155636728090e-03, 3.2049702280    
115            3.086278682608780e-03, 2.9760639835    
116            2.873449362352470e-03, 2.7776749297    
117   };                                              
118   double    r, rr;                                
119                                                   
120   if (k > 30L) {                                  
121     r = 1.0 / (double) k;  rr = r * r;            
122     return(r*(C1 + rr*(C3 + rr*(C5 + rr*C7))))    
123   }                                               
124   else  return(c[k]);                             
125 }                                                 
126                                                   
127 double RandBinomial::genBinomial( HepRandomEng    
128 {                                                 
129 /*********************************************    
130  *                                                
131  *     Binomial-Distribution - Acceptance Reje    
132  *                                                
133  *********************************************    
134  *                                                
135  * Acceptance Rejection method combined with I    
136  * generating Binomial random numbers with par    
137  * n (number of trials) and p (probability of     
138  * For  min(n*p,n*(1-p)) < 10  the Inversion m    
139  * The random numbers are generated via sequen    
140  * starting at the lowest index k=0. The cumul    
141  * are avoided by using the technique of chop-    
142  * For  min(n*p,n*(1-p)) >= 10  Acceptance Rej    
143  * The algorithm is based on a hat-function wh    
144  * the centre region and exponential in the ta    
145  * A triangular immediate acceptance region in    
146  * up the generation of binomial variates.        
147  * If candidate k is near the mode, f(k) is co    
148  * starting at the mode m.                        
149  * The acceptance test by Stirling's formula i    
150  * according to W. Hoermann (1992): The genera    
151  * random variates, to appear in J. Statist. C    
152  * If  p < .5  the algorithm is applied to par    
153  * Otherwise p is replaced by 1-p, and k is re    
154  *                                                
155  *********************************************    
156  *                                                
157  * FUNCTION:    - btpec samples a random numbe    
158  *                distribution with parameters    
159  *                valid for  n*min(p,1-p)  >      
160  * REFERENCE:   - V. Kachitvichyanukul, B.W. S    
161  *                Binomial random variate gene    
162  *                Communications of the ACM 31    
163  * SUBPROGRAMS: - StirlingCorrection()            
164  *                            ... Correction t    
165  *                                approximatio    
166  *                                (series in 1    
167  *                                for small k)    
168  *              - anEngine    ... Pointer to a    
169  *                                engine          
170  *                                                
171  * Implemented by H. Zechner and P. Busswald,     
172  *********************************************    
173                                                   
174 #define C1_3     0.33333333333333333              
175 #define C5_8     0.62500000000000000              
176 #define C1_6     0.16666666666666667              
177 #define DMAX_KM  20L                              
178                                                   
179   static CLHEP_THREAD_LOCAL long int      n_la    
180   static CLHEP_THREAD_LOCAL double        par,    
181   static CLHEP_THREAD_LOCAL long          b,m,    
182   static CLHEP_THREAD_LOCAL double        pq,     
183          p1, p2, p3, p4, ch;                      
184                                                   
185   long                 bh,i, K, Km, nK;           
186   double               f, rm, U, V, X, T, E;      
187                                                   
188   if (n != n_last || p != p_last)                 
189   {                                               
190    n_last = n;                                    
191    p_last = p;                                    
192    par=std::min(p,1.0-p);                         
193    q=1.0-par;                                     
194    np = n*par;                                    
195                                                   
196 // Check for invalid input values                 
197                                                   
198    if( np <= 0.0 ) return (-1.0);                 
199                                                   
200    rm = np + par;                                 
201    m  = (long int) rm;                      //    
202    if (np<10)                                     
203   {                                               
204    p0=std::exp(n*std::log(q));              //    
205    bh=(long int)(np+10.0*std::sqrt(np*q));        
206    b=std::min(n,bh);                              
207   }                                               
208    else                                           
209      {                                            
210   rc = (n + 1.0) * (pq = par / q);          //    
211   ss = np * q;                              //    
212   i  = (long int) (2.195*std::sqrt(ss) - 4.6*q    
213   xm = m + 0.5;                                   
214   xl = (double) (m - i);                    //    
215   xr = (double) (m + i + 1L);               //    
216   f  = (rm - xl) / (rm - xl*par);  ll = f * (1    
217   f  = (xr - rm) / (xr * q);     lr = f * (1.0    
218   c  = 0.134 + 20.5/(15.3 + (double) m);    //    
219               // height                           
220   p1 = i + 0.5;                                   
221   p2 = p1 * (1.0 + c + c);                  //    
222   p3 = p2 + c/ll;                           //    
223   p4 = p3 + c/lr;                                 
224      }                                            
225   }                                               
226   if( np <= 0.0 ) return (-1.0);                  
227   if (np<10)                                      
228    {                                              
229     double pk;                                    
230                                                   
231     K=0;                                          
232     pk=p0;                                        
233     U=anEngine->flat();                           
234     while (U>pk)                                  
235     {                                             
236      ++K;                                         
237      if (K>b)                                     
238        {                                          
239     U=anEngine->flat();                           
240     K=0;                                          
241     pk=p0;                                        
242        }                                          
243      else                                         
244        {                                          
245     U-=pk;                                        
246     pk=(double)(((n-K+1)*par*pk)/(K*q));          
247        }                                          
248     }                                             
249     return ((p>0.5) ? (double)(n-K):(double)K)    
250    }                                              
251                                                   
252   for (;;)                                        
253   {                                               
254    V = anEngine->flat();                          
255    if ((U = anEngine->flat() * p4) <= p1)  //     
256     {                                             
257      K=(long int) (xm - U + p1*V);                
258   return ((p>0.5) ? (double)(n-K):(double)K);     
259     }                                             
260    if (U <= p2)                                   
261     {                                             
262      X = xl + (U - p1)/c;                         
263      if ((V = V*c + 1.0 - std::fabs(xm - X)/p1    
264      K = (long int) X;                            
265     }                                             
266    else if (U <= p3)                              
267     {                                             
268      if ((X = xl + std::log(V)/ll) < 0.0)  con    
269      K = (long int) X;                            
270      V *= (U - p2) * ll;                          
271     }                                             
272    else                                           
273     {                                             
274      if ((K = (long int) (xr - std::log(V)/lr)    
275      V *= (U - p3) * lr;                          
276     }                                             
277                                                   
278  // acceptance test :  two cases, depending on    
279    if ((Km = std::labs(K - m)) <= DMAX_KM || K    
280     {                                             
281                                                   
282  // computation of p(K) via recurrence relatio    
283     f = 1.0;                              // f    
284     if (m < K)                                    
285    {                                              
286     for (i = m; i < K; )                          
287     {                                             
288     if ((f *= (rc / ++i - pq)) < V)  break;  /    
289     }                                             
290    }                                              
291     else                                          
292    {                                              
293     for (i = K; i < m; )                          
294      {                                            
295       if ((V *= (rc / ++i - pq)) > f)  break;     
296      }                                            
297    }                                              
298     if (V <= f)  break;                           
299    }                                              
300   else                                            
301    {                                              
302                                                   
303  // lower and upper squeeze tests, based on lo    
304     V = std::log(V);                              
305     T = - Km * Km / (ss + ss);                    
306     E =  (Km / ss) * ((Km * (Km * C1_3 + C5_8)    
307     if (V <= T - E)  break;                       
308     if (V <= T + E)                               
309      {                                            
310   if (n != n_prev || par != p_prev)               
311    {                                              
312     n_prev = n;                                   
313     p_prev = par;                                 
314                                                   
315     nm = n - m + 1L;                              
316     ch = xm * std::log((m + 1.0)/(pq * nm)) +     
317          StirlingCorrection(m + 1L) + Stirling    
318    }                                              
319   nK = n - K + 1L;                                
320                                                   
321  // computation of log f(K) via Stirling's for    
322  // final acceptance-rejection test               
323   if (V <= ch + (n + 1.0)*std::log((double) nm    
324                  (K + 0.5)*std::log(nK * pq /     
325                  StirlingCorrection(K + 1L) -     
326     }                                             
327    }                                              
328   }                                               
329   return ((p>0.5) ? (double)(n-K):(double)K);     
330 }                                                 
331                                                   
332 std::ostream & RandBinomial::put ( std::ostrea    
333   long pr=os.precision(20);                       
334   std::vector<unsigned long> t(2);                
335   os << " " << name() << "\n";                    
336   os << "Uvec" << "\n";                           
337   t = DoubConv::dto2longs(defaultP);              
338   os << defaultN << " " << defaultP << " " <<     
339   os.precision(pr);                               
340   return os;                                      
341 }                                                 
342                                                   
343 std::istream & RandBinomial::get ( std::istrea    
344   std::string inName;                             
345   is >> inName;                                   
346   if (inName != name()) {                         
347     is.clear(std::ios::badbit | is.rdstate());    
348     std::cerr << "Mismatch when expecting to r    
349             << name() << " distribution\n"        
350         << "Name found was " << inName            
351         << "\nistream is left in the badbit st    
352     return is;                                    
353   }                                               
354   if (possibleKeywordInput(is, "Uvec", default    
355     std::vector<unsigned long> t(2);              
356     is >> defaultN >> defaultP;                   
357     is >> t[0] >> t[1]; defaultP = DoubConv::l    
358     return is;                                    
359   }                                               
360   // is >> defaultN encompassed by possibleKey    
361   is >> defaultP;                                 
362   return is;                                      
363 }                                                 
364                                                   
365                                                   
366 }  // namespace CLHEP                             
367