Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/clhep/include/CLHEP/Random/ranluxpp/mulmod.h

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /externals/clhep/include/CLHEP/Random/ranluxpp/mulmod.h (Version 11.3.0) and /externals/clhep/include/CLHEP/Random/ranluxpp/mulmod.h (Version 9.2)


  1 //                                                  1 
  2 // -*- C++ -*-                                    
  3 //                                                
  4 // -------------------------------------------    
  5 //                             HEP Random         
  6 //                       --- RanluxppEngine --    
  7 //                     helper implementation f    
  8 // -------------------------------------------    
  9                                                   
 10 #ifndef RANLUXPP_MULMOD_H                         
 11 #define RANLUXPP_MULMOD_H                         
 12                                                   
 13 #include "helpers.h"                              
 14                                                   
 15 #include <cstdint>                                
 16                                                   
 17 /// Multiply two 576 bit numbers, stored as 9     
 18 ///                                               
 19 /// \param[in] in1 first factor as 9 numbers o    
 20 /// \param[in] in2 second factor as 9 numbers     
 21 /// \param[out] out result with 18 numbers of     
 22 static void multiply9x9(const uint64_t *in1, c    
 23                         uint64_t *out) {          
 24   uint64_t next = 0;                              
 25   unsigned nextCarry = 0;                         
 26                                                   
 27 #if defined(__clang__) || defined(__INTEL_COMP    
 28 #pragma unroll                                    
 29 #elif defined(__GNUC__) && __GNUC__ >= 8          
 30 // This pragma was introduced in GCC version 8    
 31 #pragma GCC unroll 18                             
 32 #endif                                            
 33   for (int i = 0; i < 18; i++) {                  
 34     uint64_t current = next;                      
 35     unsigned carry = nextCarry;                   
 36                                                   
 37     next = 0;                                     
 38     nextCarry = 0;                                
 39                                                   
 40 #if defined(__clang__) || defined(__INTEL_COMP    
 41 #pragma unroll                                    
 42 #elif defined(__GNUC__) && __GNUC__ >= 8          
 43 // This pragma was introduced in GCC version 8    
 44 #pragma GCC unroll 9                              
 45 #endif                                            
 46     for (int j = 0; j < 9; j++) {                 
 47       int k = i - j;                              
 48       if (k < 0 || k >= 9)                        
 49         continue;                                 
 50                                                   
 51       uint64_t fac1 = in1[j];                     
 52       uint64_t fac2 = in2[k];                     
 53 #if defined(__SIZEOF_INT128__) && !defined(CLH    
 54 #ifdef __GNUC__                                   
 55 #pragma GCC diagnostic push                       
 56 #pragma GCC diagnostic ignored "-Wpedantic"       
 57 #endif                                            
 58       unsigned __int128 prod = fac1;              
 59       prod = prod * fac2;                         
 60                                                   
 61       uint64_t upper = prod >> 64;                
 62       uint64_t lower = static_cast<uint64_t>(p    
 63 #ifdef __GNUC__                                   
 64 #pragma GCC diagnostic pop                        
 65 #endif                                            
 66 #else                                             
 67       uint64_t upper1 = fac1 >> 32;               
 68       uint64_t lower1 = static_cast<uint32_t>(    
 69                                                   
 70       uint64_t upper2 = fac2 >> 32;               
 71       uint64_t lower2 = static_cast<uint32_t>(    
 72                                                   
 73       // Multiply 32-bit parts, each product h    
 74       // (2 ** 32 - 1) ** 2 = 2 ** 64 - 2 * 2     
 75       uint64_t upper = upper1 * upper2;           
 76       uint64_t middle1 = upper1 * lower2;         
 77       uint64_t middle2 = lower1 * upper2;         
 78       uint64_t lower = lower1 * lower2;           
 79                                                   
 80       // When adding the two products, the max    
 81       // 2 * 2 ** 64 - 4 * 2 ** 32 + 2, which     
 82       unsigned overflow;                          
 83       uint64_t middle = add_overflow(middle1,     
 84       // Handling the overflow by a multiplica    
 85       // than branching with an if statement,     
 86       // optimize to this equivalent code. Not    
 87       // without this overflow handling when s    
 88       // products differently as described in     
 89       //    https://stackoverflow.com/a/515872    
 90       // However, this approach takes at least    
 91       // why a) the code gives the same result    
 92       // to the mixture of 32 bit arithmetic.     
 93       // the scheme implemented here is actual    
 94       uint64_t overflow_add = overflow * (uint    
 95       // This addition can never overflow beca    
 96       // is 2 ** 64 - 2 * 2 ** 32 + 1 (see abo    
 97       // 2 ** 32, the result is 2 ** 64 - 2 **    
 98       // the maximum 2 ** 64 - 1 that can be s    
 99       upper += overflow_add;                      
100                                                   
101       uint64_t middle_upper = middle >> 32;       
102       uint64_t middle_lower = middle << 32;       
103                                                   
104       lower = add_overflow(lower, middle_lower    
105       upper += overflow;                          
106                                                   
107       // This still can't overflow since the m    
108       //  - 2 ** 32 - 4 if there was an overfl    
109       //    the maximum value of upper to 2 **    
110       //  - otherwise upper still has the init    
111       //    and the addition of a value smalle    
112       //    a maximum value of 2 ** 64 - 2 **     
113       // (Both cases include the increment to     
114       //                                          
115       // All the reasoning makes perfect sense    
116       // 64 bit numbers is smaller than or equ    
117       //     (2 ** 64 - 1) ** 2 = 2 ** 128 - 2    
118       // with the upper bits matching the 2 **    
119       upper += middle_upper;                      
120 #endif                                            
121                                                   
122       // Add to current, remember carry.          
123       current = add_carry(current, lower, carr    
124                                                   
125       // Add to next, remember nextCarry.         
126       next = add_carry(next, upper, nextCarry)    
127     }                                             
128                                                   
129     next = add_carry(next, carry, nextCarry);     
130                                                   
131     out[i] = current;                             
132   }                                               
133 }                                                 
134                                                   
135 /// Compute a value congruent to mul modulo m     
136 ///                                               
137 /// \param[in] mul product from multiply9x9 wi    
138 /// \param[out] out result with 9 numbers of 6    
139 ///                                               
140 /// \f$ m = 2^{576} - 2^{240} + 1 \f$             
141 ///                                               
142 /// The result in out is guaranteed to be smal    
143 static void mod_m(const uint64_t *mul, uint64_    
144   uint64_t r[9];                                  
145   // Assign r = t0                                
146   for (int i = 0; i < 9; i++) {                   
147     r[i] = mul[i];                                
148   }                                               
149                                                   
150   int64_t c = compute_r(mul + 9, r);              
151                                                   
152   // To update r = r - c * m, it suffices to k    
153   // because the 2 ** 576 will cancel out. Als    
154   // the operation is still performed to avoid    
155                                                   
156   // c * (-2 ** 240 + 1) in 576 bits looks as     
157   //  - if c = 0, the number is zero.             
158   //  - if c = 1: bits 576 to 240 are set,        
159   //              bits 239 to 1 are zero, and     
160   //              the last one is set             
161   //  - if c = -1, which corresponds to all bi    
162   //              bits 576 to 240 are zero and    
163   // Note that all bits except the last are ex    
164   // and the last byte is conveniently represe    
165   // Now construct the three bit patterns from    
166   // assembly implementation by Alexei Sibidan    
167                                                   
168   // c = 0 -> t0 = 0; c = 1 -> t0 = 0; c = -1     
169   // (The assembly implementation shifts by 63    
170   int64_t t0 = c >> 1;                            
171                                                   
172   // Left shifting negative values is undefine    
173   // unsigned.                                    
174   uint64_t c_unsigned = static_cast<uint64_t>(    
175                                                   
176   // c = 0 -> t2 = 0; c = 1 -> upper 16 bits s    
177   int64_t t2 = t0 - (c_unsigned << 48);           
178                                                   
179   // c = 0 -> t1 = 0; c = 1 -> all bits set (s    
180   // (The assembly implementation shifts by 63    
181   int64_t t1 = t2 >> 48;                          
182                                                   
183   unsigned carry = 0;                             
184   {                                               
185     uint64_t r_0 = r[0];                          
186                                                   
187     uint64_t out_0 = sub_carry(r_0, c, carry);    
188     out[0] = out_0;                               
189   }                                               
190   for (int i = 1; i < 3; i++) {                   
191     uint64_t r_i = r[i];                          
192     r_i = sub_overflow(r_i, carry, carry);        
193                                                   
194     uint64_t out_i = sub_carry(r_i, t0, carry)    
195     out[i] = out_i;                               
196   }                                               
197   {                                               
198     uint64_t r_3 = r[3];                          
199     r_3 = sub_overflow(r_3, carry, carry);        
200                                                   
201     uint64_t out_3 = sub_carry(r_3, t2, carry)    
202     out[3] = out_3;                               
203   }                                               
204   for (int i = 4; i < 9; i++) {                   
205     uint64_t r_i = r[i];                          
206     r_i = sub_overflow(r_i, carry, carry);        
207                                                   
208     uint64_t out_i = sub_carry(r_i, t1, carry)    
209     out[i] = out_i;                               
210   }                                               
211 }                                                 
212                                                   
213 /// Combine multiply9x9 and mod_m with interna    
214 ///                                               
215 /// \param[in] in1 first factor with 9 numbers    
216 /// \param[inout] inout second factor and also    
217 ///                                               
218 /// The result in inout is guaranteed to be sm    
219 static void mulmod(const uint64_t *in1, uint64    
220   uint64_t mul[2 * 9] = {0};                      
221   multiply9x9(in1, inout, mul);                   
222   mod_m(mul, inout);                              
223 }                                                 
224                                                   
225 /// Compute base to the n modulo m                
226 ///                                               
227 /// \param[in] base with 9 numbers of 64 bits     
228 /// \param[out] res output with 9 numbers of 6    
229 /// \param[in] n exponent                         
230 ///                                               
231 /// The arguments base and res may point to th    
232 static void powermod(const uint64_t *base, uin    
233   uint64_t fac[9] = {0};                          
234   fac[0] = base[0];                               
235   res[0] = 1;                                     
236   for (int i = 1; i < 9; i++) {                   
237     fac[i] = base[i];                             
238     res[i] = 0;                                   
239   }                                               
240                                                   
241   uint64_t mul[18] = {0};                         
242   while (n) {                                     
243     if (n & 1) {                                  
244       multiply9x9(res, fac, mul);                 
245       mod_m(mul, res);                            
246     }                                             
247     n >>= 1;                                      
248     if (!n)                                       
249       break;                                      
250     multiply9x9(fac, fac, mul);                   
251     mod_m(mul, fac);                              
252   }                                               
253 }                                                 
254                                                   
255 #endif                                            
256