Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file RE06/include/RE06Run.hh 26 /// \file RE06/include/RE06Run.hh 27 /// \brief Definition of the RE06Run class 27 /// \brief Definition of the RE06Run class 28 // 28 // >> 29 // $Id$ 29 // 30 // 30 31 31 #ifndef RE06Run_h 32 #ifndef RE06Run_h 32 #define RE06Run_h 1 33 #define RE06Run_h 1 33 34 >> 35 #include "globals.hh" 34 #include "G4Run.hh" 36 #include "G4Run.hh" >> 37 35 #include "G4THitsMap.hh" 38 #include "G4THitsMap.hh" 36 #include "globals.hh" << 37 39 38 class G4Event; 40 class G4Event; 39 41 40 class RE06Run : public G4Run 42 class RE06Run : public G4Run 41 { 43 { 42 public: << 44 public: 43 RE06Run(); << 45 RE06Run(); 44 virtual ~RE06Run(); << 46 virtual ~RE06Run(); 45 << 47 46 virtual void RecordEvent(const G4Event*); << 48 virtual void RecordEvent(const G4Event*); 47 virtual void Merge(const G4Run*); << 49 virtual void Merge(const G4Run*); 48 << 50 49 G4double GetTotalE(G4int i) const { return << 51 G4double GetTotalE(G4int i) const { return GetTotal(fMapSum[i][0]); } 50 G4double GetNGamma(G4int i) const { return << 52 G4double GetNGamma(G4int i) const { return GetTotal(fMapSum[i][1]); } 51 G4double GetNElectron(G4int i) const { ret << 53 G4double GetNElectron(G4int i) const { return GetTotal(fMapSum[i][2]); } 52 G4double GetNPositron(G4int i) const { ret << 54 G4double GetNPositron(G4int i) const { return GetTotal(fMapSum[i][3]); } 53 G4double GetTotalL(G4int i) const { return << 55 G4double GetTotalL(G4int i) const { return GetTotal(fMapSum[i][4]); } 54 G4double GetNStep(G4int i) const { return << 56 G4double GetNStep(G4int i) const { return GetTotal(fMapSum[i][5]); } 55 << 57 56 G4double GetEMinGamma(G4int i) const { ret << 58 G4double GetEMinGamma(G4int i) const { return FindMinimum(fMapMin[i][0]);} 57 G4double GetEMinElectron(G4int i) const { << 59 G4double GetEMinElectron(G4int i) const { return FindMinimum(fMapMin[i][1]);} 58 G4double GetEMinPositron(G4int i) const { << 60 G4double GetEMinPositron(G4int i) const { return FindMinimum(fMapMin[i][2]);} 59 << 61 60 G4double GetParaValue(G4int i, G4int j, G4 << 62 G4double GetParaValue(G4int i,G4int j,G4int k) const 61 { << 63 { 62 G4double* p = fMapPara[i][j][k]; << 64 G4double* p = fMapPara[i][j][k]; 63 if (p) return *p; << 65 if(p) return *p; 64 return 0.; << 66 return 0.; 65 } << 67 } 66 << 68 67 private: << 69 private: 68 G4double GetTotal(const G4THitsMap<G4doubl << 70 G4double GetTotal(const G4THitsMap<G4double> &map) const; 69 G4double FindMinimum(const G4THitsMap<G4do << 71 G4double FindMinimum(const G4THitsMap<G4double> &map) const; 70 << 72 71 // Maps for accumulation << 73 // Maps for accumulation 72 // fMapSum[i][j] << 74 // fMapSum[i][j] 73 // i = 0 : Calor-A_abs j = 0 : total e << 75 // i = 0 : Calor-A_abs j = 0 : total eDep 74 // i = 1 : Calor-A_gap j = 1 : number << 76 // i = 1 : Calor-A_gap j = 1 : number of gamma 75 // i = 2 : Calor-B_abs j = 2 : number << 77 // i = 2 : Calor-B_abs j = 2 : number of electron 76 // i = 3 : Calor-B_gap j = 3 : number << 78 // i = 3 : Calor-B_gap j = 3 : number of positron 77 // i = 4 : Calor-C_abs j = 4 : total s << 79 // i = 4 : Calor-C_abs j = 4 : total step length for e+/e- 78 // i = 5 : Calor-C_gap j = 5 : total n << 80 // i = 5 : Calor-C_gap j = 5 : total number of steps for e+/e- 79 G4THitsMap<G4double> fMapSum[6][6]; << 81 G4THitsMap<G4double> fMapSum[6][6]; 80 G4int fColIDSum[6][6]; << 82 G4int fColIDSum[6][6]; 81 << 83 82 // Maps for minimum value << 84 // Maps for minimum value 83 // i = 0 : Calor-A_abs j = 0 : minimum << 85 // i = 0 : Calor-A_abs j = 0 : minimum kinE at generation for gamma 84 // i = 1 : Calor-A_gap j = 1 : minimum << 86 // i = 1 : Calor-A_gap j = 1 : minimum kinE at generation for electron 85 // i = 2 : Calor-B_abs j = 2 : minimum << 87 // i = 2 : Calor-B_abs j = 2 : minimum kinE at generation for positron 86 // i = 3 : Calor-B_gap << 88 // i = 3 : Calor-B_gap 87 // i = 4 : Calor-C_abs << 89 // i = 4 : Calor-C_abs 88 // i = 5 : Calor-C_gap << 90 // i = 5 : Calor-C_gap 89 G4THitsMap<G4double> fMapMin[6][3]; << 91 G4THitsMap<G4double> fMapMin[6][3]; 90 G4int fColIDMin[6][3]; << 92 G4int fColIDMin[6][3]; 91 << 93 92 // Maps for accumulation in parallel world << 94 // Maps for accumulation in parallel world 93 // fMapPara[i][j] << 95 // fMapPara[i][j] 94 // i = 0 : Calor-AP_para j = 0 : total << 96 // i = 0 : Calor-AP_para j = 0 : total eDep 95 // i = 1 : Calor-BP_para j = 1 : numbe << 97 // i = 1 : Calor-BP_para j = 1 : number of gamma 96 // i = 2 : Calor-CP_para j = 2 : numbe << 98 // i = 2 : Calor-CP_para j = 2 : number of electron 97 // j = 3 : number << 99 // j = 3 : number of positron 98 // j = 4 : total << 100 // j = 4 : total step length for e+/e- 99 // j = 5 : total << 101 // j = 5 : total number of steps for e+/e- 100 G4THitsMap<G4double> fMapPara[3][6]; << 102 G4THitsMap<G4double> fMapPara[3][6]; 101 G4int fColIDPara[3][6]; << 103 G4int fColIDPara[3][6]; >> 104 102 }; 105 }; 103 106 104 #endif 107 #endif >> 108 105 109