Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/parameterisations/Par04/training/generate.py

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/extended/parameterisations/Par04/training/generate.py (Version 11.3.0) and /examples/extended/parameterisations/Par04/training/generate.py (Version 9.6.p2)


  1 """                                               
  2 ** generate **                                    
  3 generate showers using a saved VAE model          
  4 """                                               
  5 import argparse                                   
  6                                                   
  7 import numpy as np                                
  8 import tensorflow as tf                           
  9 from tensorflow.python.data import Dataset        
 10                                                   
 11 from core.constants import GLOBAL_CHECKPOINT_D    
 12 from utils.gpu_limiter import GPULimiter          
 13 from utils.preprocess import get_condition_arr    
 14                                                   
 15                                                   
 16 def parse_args():                                 
 17     argument_parser = argparse.ArgumentParser(    
 18     argument_parser.add_argument("--geometry",    
 19     argument_parser.add_argument("--energy", t    
 20     argument_parser.add_argument("--angle", ty    
 21     argument_parser.add_argument("--events", t    
 22     argument_parser.add_argument("--epoch", ty    
 23     argument_parser.add_argument("--study-name    
 24     argument_parser.add_argument("--max-gpu-me    
 25     argument_parser.add_argument("--gpu-ids",     
 26     args = argument_parser.parse_args()           
 27     return args                                   
 28                                                   
 29                                                   
 30 # main function                                   
 31 def main():                                       
 32     # 0. Parse arguments.                         
 33     args = parse_args()                           
 34     energy = args.energy                          
 35     angle = args.angle                            
 36     geometry = args.geometry                      
 37     events = args.events                          
 38     epoch = args.epoch                            
 39     study_name = args.study_name                  
 40     max_gpu_memory_allocation = args.max_gpu_m    
 41     gpu_ids = args.gpu_ids                        
 42                                                   
 43     # 1. Set GPU memory limits.                   
 44     GPULimiter(_gpu_ids=gpu_ids, _max_gpu_memo    
 45                                                   
 46     # 2. Load a saved model.                      
 47                                                   
 48     # Create a handler and build model.           
 49     # This import must be local because otherw    
 50     from core.model import VAEHandler             
 51     vae = VAEHandler()                            
 52                                                   
 53     # Load the saved weights                      
 54     weights_dir = f"VAE_epoch_{epoch:03}" if e    
 55     vae.model.load_weights(f"{GLOBAL_CHECKPOIN    
 56                                                   
 57     # The generator is defined as the decoder     
 58     generator = vae.model.decoder                 
 59                                                   
 60     # 3. Prepare data. Get condition values. S    
 61     # latent space dimension). Gather them int    
 62     # on the Dataset objects. Disable AutoShar    
 63     e_cond, angle_cond, geo_cond = get_conditi    
 64                                                   
 65     z_r = np.random.normal(loc=0, scale=1, siz    
 66                                                   
 67     data = ((z_r, e_cond, angle_cond, geo_cond    
 68                                                   
 69     data = Dataset.from_tensor_slices(data)       
 70                                                   
 71     batch_size = BATCH_SIZE_PER_REPLICA           
 72                                                   
 73     data = data.batch(batch_size)                 
 74                                                   
 75     options = tf.data.Options()                   
 76     options.experimental_distribute.auto_shard    
 77     data = data.with_options(options)             
 78                                                   
 79     # 4. Generate showers using the VAE model.    
 80     generated_events = generator.predict(data)    
 81                                                   
 82     # 5. Save the generated showers.              
 83     np.save(f"{GEN_DIR}/VAE_Generated_Geo_{geo    
 84                                                   
 85                                                   
 86 if __name__ == "__main__":                        
 87     exit(main())