Geant4 Cross Reference |
1 This repository contains the set of scripts us 1 This repository contains the set of scripts used to train, generate and validate the generative model used 2 in this example. 2 in this example. 3 3 4 - root2h5.py: translation of ROOT file with sh << 5 - core/constants.py: defines the set of common 4 - core/constants.py: defines the set of common variables. 6 - core/model.py: defines the VAE model class a 5 - core/model.py: defines the VAE model class and a handler to construct the model. 7 - utils/preprocess.py: defines the data loadin 6 - utils/preprocess.py: defines the data loading and preprocessing functions. 8 - utils/hyperparameter_tuner.py: defines the H 7 - utils/hyperparameter_tuner.py: defines the HyperparameterTuner class. 9 - utils/gpu_limiter.py: defines a logic respon 8 - utils/gpu_limiter.py: defines a logic responsible for GPU memory management. 10 - utils/observables.py: defines a set of obser 9 - utils/observables.py: defines a set of observable possibly calculated from a shower. 11 - utils/plotter.py: defines plotting classes r 10 - utils/plotter.py: defines plotting classes responsible for manufacturing various plots of observables. 12 - train.py: performs model training. 11 - train.py: performs model training. 13 - generate.py: generate showers using a saved 12 - generate.py: generate showers using a saved VAE model. 14 - observables.py: defines a set of shower obse 13 - observables.py: defines a set of shower observables. 15 - validate.py: creates validation plots using 14 - validate.py: creates validation plots using shower observables. 16 - convert.py: defines the conversion function 15 - convert.py: defines the conversion function to an ONNX file. 17 - tune_model.py: performs hyperparameters opti 16 - tune_model.py: performs hyperparameters optimization. 18 17 19 ## Getting Started 18 ## Getting Started 20 19 21 `setup.py` script creates necessary folders us 20 `setup.py` script creates necessary folders used to save model checkpoints, generate showers and validation plots. 22 21 23 ``` 22 ``` 24 python3 setup.py 23 python3 setup.py 25 ``` 24 ``` 26 25 27 ## Full simulation dataset 26 ## Full simulation dataset 28 27 29 The full simulation dataset can be downloaded 28 The full simulation dataset can be downloaded from/linked to [Zenodo](https://zenodo.org/record/6082201#.Ypo5UeDRaL4). 30 << 31 If custom simulation is used, the output of fu << 32 29 33 ## Training 30 ## Training 34 31 35 In order to launch the training: 32 In order to launch the training: 36 33 37 ``` 34 ``` 38 python3 train.py 35 python3 train.py 39 ``` 36 ``` 40 37 41 You may specify those three following flags. I 38 You may specify those three following flags. If you do not, then default values will be used. 42 39 43 ```--max-gpu-memory-allocation``` specifies a 40 ```--max-gpu-memory-allocation``` specifies a maximum memory allocation on a single, logic GPU unit. Should be given as 44 an integer. 41 an integer. 45 42 46 ```--gpu-ids``` specifies IDs of physical GPUs 43 ```--gpu-ids``` specifies IDs of physical GPUs. Should be given as a string, separated with comas, no spaces. 47 If you specify more than one GPU then automati 44 If you specify more than one GPU then automatically ```tf.distribute.MirroredStrategy``` will be applied to the 48 training. 45 training. 49 46 50 ```--study-name``` specifies a study name. Thi 47 ```--study-name``` specifies a study name. This name is used as an experiment name in W&B dashboard and as a name of 51 directory for saving models. 48 directory for saving models. 52 49 53 ## Hyperparameters tuning 50 ## Hyperparameters tuning 54 51 55 If you want to tune hyperparameters, specify i 52 If you want to tune hyperparameters, specify in `tune_model.py` parameters to be tuned. There are three types of 56 parameters: discrete, continuous and categoric 53 parameters: discrete, continuous and categorical. Discrete and continuous require range specification (low, high), while 57 the categorical parameter requires a list of p 54 the categorical parameter requires a list of possible values to be chosen. Then run it with: 58 55 59 ``` 56 ``` 60 python3 tune_model.py 57 python3 tune_model.py 61 ``` 58 ``` 62 59 63 If you want to parallelize tuning process you 60 If you want to parallelize tuning process you need to specify a common storage (preferable MySQL database) by 64 setting `--storage="URL_TO_MYSQL_DATABASE"`. T 61 setting `--storage="URL_TO_MYSQL_DATABASE"`. Then you can run multiple processes with the same command: 65 62 66 ``` 63 ``` 67 python3 tune_model.py --storage="URL_TO_MYSQL_ 64 python3 tune_model.py --storage="URL_TO_MYSQL_DATABASE" 68 ``` 65 ``` 69 66 70 Similarly to training procedure, you may speci 67 Similarly to training procedure, you may specify ```--max-gpu-memory-allocation```, ```--gpu-ids``` and 71 ```--study-name```. 68 ```--study-name```. 72 69 73 ## ML shower generation (MLFastSim) 70 ## ML shower generation (MLFastSim) 74 71 75 In order to generate showers using the ML mode 72 In order to generate showers using the ML model, use `generate.py` script and specify information of geometry, energy 76 and angle of the particle and the epoch of the 73 and angle of the particle and the epoch of the saved checkpoint model. The number of events to generate can also be 77 specified (by default is set to 10.000): 74 specified (by default is set to 10.000): 78 75 79 ``` 76 ``` 80 python3 generate.py --geometry=SiW --energy=64 77 python3 generate.py --geometry=SiW --energy=64 --angle=90 --epoch=1000 --study-name=YOUR_STUDY_NAME 81 ``` 78 ``` 82 79 83 If you do not specify an epoch number the base 80 If you do not specify an epoch number the based model (saved as ```VAEbest```) will be used for shower generation. 84 81 85 ## Validation 82 ## Validation 86 83 87 In order to validate the MLFastSim and the ful 84 In order to validate the MLFastSim and the full simulation, use `validate.py` script and specify information of 88 geometry, energy and angle of the particle: 85 geometry, energy and angle of the particle: 89 86 90 ``` 87 ``` 91 python3 validate.py --geometry=SiW --energye=6 88 python3 validate.py --geometry=SiW --energye=64 --angle=90 92 ``` 89 ``` 93 90 94 ## Conversion 91 ## Conversion 95 92 96 After training and validation, the model can b 93 After training and validation, the model can be converted into a format that can be used in C++, such as ONNX, 97 use `convert.py` script: 94 use `convert.py` script: 98 95 99 ``` 96 ``` 100 python3 convert.py --epoch 1000 97 python3 convert.py --epoch 1000 101 ``` 98 ```