Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file medical/fanoCavity/src/MyMollerBhabh 26 /// \file medical/fanoCavity/src/MyMollerBhabhaModel.cc 27 /// \brief Implementation of the MyMollerBhabh 27 /// \brief Implementation of the MyMollerBhabhaModel class 28 // 28 // 29 // 29 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 32 33 #include "MyMollerBhabhaModel.hh" 33 #include "MyMollerBhabhaModel.hh" 34 34 35 #include "G4PhysicalConstants.hh" 35 #include "G4PhysicalConstants.hh" 36 #include "G4SystemOfUnits.hh" 36 #include "G4SystemOfUnits.hh" 37 37 38 //....oooOO0OOooo........oooOO0OOooo........oo 38 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 39 39 40 using namespace std; 40 using namespace std; 41 41 42 MyMollerBhabhaModel::MyMollerBhabhaModel(const << 42 MyMollerBhabhaModel::MyMollerBhabhaModel(const G4ParticleDefinition* p, 43 : G4MollerBhabhaModel(p, nam) << 43 const G4String& nam) >> 44 : G4MollerBhabhaModel(p,nam) 44 {} 45 {} 45 46 46 //....oooOO0OOooo........oooOO0OOooo........oo 47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 47 48 48 MyMollerBhabhaModel::~MyMollerBhabhaModel() {} << 49 MyMollerBhabhaModel::~MyMollerBhabhaModel() >> 50 {} 49 51 50 //....oooOO0OOooo........oooOO0OOooo........oo 52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 51 53 52 G4double MyMollerBhabhaModel::ComputeDEDXPerVo << 54 G4double MyMollerBhabhaModel::ComputeDEDXPerVolume( 53 << 55 const G4Material* material, 54 << 56 const G4ParticleDefinition* p, >> 57 G4double kineticEnergy, >> 58 G4double cutEnergy) 55 { 59 { 56 if (!particle) SetParticle(p); << 60 if(!particle) SetParticle(p); 57 // calculate the dE/dx due to the ionization 61 // calculate the dE/dx due to the ionization by Seltzer-Berger formula 58 << 62 59 G4double electronDensity = material->GetElec 63 G4double electronDensity = material->GetElectronDensity(); 60 G4double Zeff = electronDensity / material-> << 64 G4double Zeff = electronDensity/material->GetTotNbOfAtomsPerVolume(); 61 G4double th = 0.25 * sqrt(Zeff) * keV; << 65 G4double th = 0.25*sqrt(Zeff)*keV; 62 G4double tkin = kineticEnergy; << 66 G4double tkin = kineticEnergy; 63 G4bool lowEnergy = false; << 67 G4bool lowEnergy = false; 64 if (kineticEnergy < th) { 68 if (kineticEnergy < th) { 65 tkin = th; 69 tkin = th; 66 lowEnergy = true; 70 lowEnergy = true; 67 } 71 } 68 G4double tau = tkin / electron_mass_c2; << 72 G4double tau = tkin/electron_mass_c2; 69 G4double gam = tau + 1.0; << 73 G4double gam = tau + 1.0; 70 G4double gamma2 = gam * gam; << 74 G4double gamma2= gam*gam; 71 G4double beta2 = 1. - 1. / gamma2; << 75 G4double beta2 = 1. - 1./gamma2; 72 // G4double bg2 = beta2*gamma2; << 76 //G4double bg2 = beta2*gamma2; 73 << 77 74 G4double eexc = material->GetIonisation()->G << 78 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); 75 eexc /= electron_mass_c2; << 79 eexc /= electron_mass_c2; 76 G4double eexc2 = eexc * eexc; << 80 G4double eexc2 = eexc*eexc; 77 81 78 G4double d = min(cutEnergy, MaxSecondaryEner << 82 G4double d = min(cutEnergy, MaxSecondaryEnergy(p, tkin))/electron_mass_c2; 79 G4double dedx; 83 G4double dedx; 80 84 81 // electron 85 // electron 82 if (isElectron) { 86 if (isElectron) { 83 dedx = log(2.0 * (tau + 2.0) / eexc2) - 1. << 84 + (0.5 * d * d + (2.0 * tau + 1.) * << 85 87 86 // positron << 88 dedx = log(2.0*(tau + 2.0)/eexc2) - 1.0 - beta2 87 } << 89 + log((tau-d)*d) + tau/(tau-d) 88 else { << 90 + (0.5*d*d + (2.0*tau + 1.)*log(1. - d/tau))/gamma2; 89 G4double d2 = d * d * 0.5; << 91 90 G4double d3 = d2 * d / 1.5; << 92 //positron 91 G4double d4 = d3 * d * 3.75; << 93 } else { 92 G4double y = 1.0 / (1.0 + gam); << 94 93 dedx = << 95 G4double d2 = d*d*0.5; 94 log(2.0 * (tau + 2.0) / eexc2) + log(tau << 96 G4double d3 = d2*d/1.5; 95 - beta2 * (tau + 2.0 * d - y * (3.0 * d2 << 97 G4double d4 = d3*d*3.75; 96 } << 98 G4double y = 1.0/(1.0 + gam); 97 << 99 dedx = log(2.0*(tau + 2.0)/eexc2) + log(tau*d) 98 // do not apply density correction << 100 - beta2*(tau + 2.0*d - y*(3.0*d2 99 // G4double cden = material->GetIonisation( << 101 + y*(d - d3 + y*(d2 - tau*d3 + d4))))/tau; 100 // G4double mden = material->GetIonisation( << 102 } 101 // G4double aden = material->GetIonisation( << 103 102 // G4double x0den = material->GetIonisation( << 104 //do not apply density correction 103 // G4double x1den = material->GetIonisation( << 105 //G4double cden = material->GetIonisation()->GetCdensity(); 104 // G4double x = log(bg2)/twoln10; << 106 //G4double mden = material->GetIonisation()->GetMdensity(); 105 << 107 //G4double aden = material->GetIonisation()->GetAdensity(); 106 // if (x >= x0den) { << 108 //G4double x0den = material->GetIonisation()->GetX0density(); 107 // dedx -= twoln10*x - cden; << 109 //G4double x1den = material->GetIonisation()->GetX1density(); 108 // if (x < x1den) dedx -= aden*pow(x1den-x << 110 //G4double x = log(bg2)/twoln10; 109 // } << 111 >> 112 //if (x >= x0den) { >> 113 // dedx -= twoln10*x - cden; >> 114 // if (x < x1den) dedx -= aden*pow(x1den-x, mden); >> 115 //} 110 116 111 // now you can compute the total ionization 117 // now you can compute the total ionization loss 112 dedx *= twopi_mc2_rcl2 * electronDensity / b << 118 dedx *= twopi_mc2_rcl2*electronDensity/beta2; 113 if (dedx < 0.0) dedx = 0.0; 119 if (dedx < 0.0) dedx = 0.0; 114 120 115 // lowenergy extrapolation 121 // lowenergy extrapolation 116 122 117 if (lowEnergy) { 123 if (lowEnergy) { 118 if (kineticEnergy >= lowLimit) << 124 119 dedx *= sqrt(tkin / kineticEnergy); << 125 if (kineticEnergy >= lowLimit) dedx *= sqrt(tkin/kineticEnergy); 120 else << 126 else dedx *= sqrt(tkin*kineticEnergy)/lowLimit; 121 dedx *= sqrt(tkin * kineticEnergy) / low << 127 122 } 128 } 123 return dedx; 129 return dedx; 124 } 130 } 125 131 126 //....oooOO0OOooo........oooOO0OOooo........oo 132 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 127 133