Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file medical/fanoCavity/src/MyKleinNishin << 26 // $Id: MyKleinNishinaCompton.cc,v 1.6 2009/10/25 19:06:26 maire Exp $ 27 /// \brief Implementation of the MyKleinNishin << 27 // GEANT4 tag $Name: geant4-09-03 $ 28 // << 29 // 28 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 29 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 31 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 32 31 33 #include "MyKleinNishinaCompton.hh" 32 #include "MyKleinNishinaCompton.hh" 34 << 35 #include "DetectorConstruction.hh" << 36 #include "MyKleinNishinaMessenger.hh" 33 #include "MyKleinNishinaMessenger.hh" >> 34 #include "DetectorConstruction.hh" 37 35 38 #include "G4DataVector.hh" << 39 #include "G4Electron.hh" 36 #include "G4Electron.hh" 40 #include "G4Gamma.hh" 37 #include "G4Gamma.hh" 41 #include "G4ParticleChangeForGamma.hh" << 42 #include "G4PhysicalConstants.hh" << 43 #include "Randomize.hh" 38 #include "Randomize.hh" >> 39 #include "G4DataVector.hh" >> 40 #include "G4ParticleChangeForGamma.hh" 44 41 45 //....oooOO0OOooo........oooOO0OOooo........oo 42 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 43 47 using namespace std; 44 using namespace std; 48 45 49 MyKleinNishinaCompton::MyKleinNishinaCompton(D << 46 MyKleinNishinaCompton::MyKleinNishinaCompton(DetectorConstruction* det, >> 47 const G4ParticleDefinition*, 50 c 48 const G4String& nam) 51 : G4KleinNishinaCompton(0, nam), fDetector(d << 49 :G4KleinNishinaCompton(0,nam), detector(det) 52 { 50 { 53 fCrossSectionFactor = 1.; << 51 CrossSectionFactor = 1.; 54 fMessenger = new MyKleinNishinaMessenger(thi << 52 pMessenger = new MyKleinNishinaMessenger(this); 55 } 53 } 56 54 57 //....oooOO0OOooo........oooOO0OOooo........oo 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 58 56 59 MyKleinNishinaCompton::~MyKleinNishinaCompton( 57 MyKleinNishinaCompton::~MyKleinNishinaCompton() 60 { << 58 { 61 delete fMessenger; << 59 delete pMessenger; 62 } 60 } 63 61 64 //....oooOO0OOooo........oooOO0OOooo........oo 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 65 63 66 G4double MyKleinNishinaCompton::CrossSectionPe << 64 G4double MyKleinNishinaCompton::CrossSectionPerVolume( 67 << 65 const G4Material* mat, 68 << 66 const G4ParticleDefinition* part, >> 67 G4double GammaEnergy, >> 68 G4double, G4double) 69 { 69 { 70 G4double xsection = G4VEmModel::CrossSection << 70 G4double CrossSection = >> 71 G4VEmModel::CrossSectionPerVolume(mat,part,GammaEnergy); 71 72 72 return xsection * fCrossSectionFactor; << 73 return CrossSection*CrossSectionFactor; 73 } 74 } 74 //....oooOO0OOooo........oooOO0OOooo........oo 75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 76 76 void MyKleinNishinaCompton::SampleSecondaries( << 77 void MyKleinNishinaCompton::SampleSecondaries( 77 << 78 std::vector<G4DynamicParticle*>* fvect, 78 << 79 const G4MaterialCutsCouple*, 79 << 80 const G4DynamicParticle* aDynamicGamma, >> 81 G4double, >> 82 G4double) 80 { 83 { 81 // The scattered gamma energy is sampled acc 84 // The scattered gamma energy is sampled according to Klein - Nishina formula. 82 // The random number techniques of Butcher & << 85 // The random number techniques of Butcher & Messel are used 83 // (Nuc Phys 20(1960),15). 86 // (Nuc Phys 20(1960),15). 84 // Note : Effects due to binding of atomic e 87 // Note : Effects due to binding of atomic electrons are negliged. 85 << 88 86 G4double gamEnergy0 = aDynamicGamma->GetKine 89 G4double gamEnergy0 = aDynamicGamma->GetKineticEnergy(); 87 G4double E0_m = gamEnergy0 / electron_mass_c << 90 G4double E0_m = gamEnergy0 / electron_mass_c2 ; 88 91 89 G4ThreeVector gamDirection0 = aDynamicGamma- 92 G4ThreeVector gamDirection0 = aDynamicGamma->GetMomentumDirection(); 90 93 91 // 94 // 92 // sample the energy rate of the scattered g << 95 // sample the energy rate of the scattered gamma 93 // 96 // 94 97 95 G4double epsilon, epsilonsq, onecost, sint2, << 98 G4double epsilon, epsilonsq, onecost, sint2, greject ; 96 99 97 G4double eps0 = 1. / (1. + 2. * E0_m); << 100 G4double epsilon0 = 1./(1. + 2.*E0_m); 98 G4double eps0sq = eps0 * eps0; << 101 G4double epsilon0sq = epsilon0*epsilon0; 99 G4double alpha1 = -log(eps0); << 102 G4double alpha1 = - log(epsilon0); 100 G4double alpha2 = 0.5 * (1. - eps0sq); << 103 G4double alpha2 = 0.5*(1.- epsilon0sq); 101 104 102 do { 105 do { 103 if (alpha1 / (alpha1 + alpha2) > G4Uniform << 106 if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) { 104 epsilon = exp(-alpha1 * G4UniformRand()) << 107 epsilon = exp(-alpha1*G4UniformRand()); // epsilon0**r 105 epsilonsq = epsilon * epsilon; << 108 epsilonsq = epsilon*epsilon; 106 } << 109 107 else { << 110 } else { 108 epsilonsq = eps0sq + (1. - eps0sq) * G4U << 111 epsilonsq = epsilon0sq + (1.- epsilon0sq)*G4UniformRand(); 109 epsilon = sqrt(epsilonsq); << 112 epsilon = sqrt(epsilonsq); 110 }; 113 }; 111 114 112 onecost = (1. - epsilon) / (epsilon * E0_m << 115 onecost = (1.- epsilon)/(epsilon*E0_m); 113 sint2 = onecost * (2. - onecost); << 116 sint2 = onecost*(2.-onecost); 114 greject = 1. - epsilon * sint2 / (1. + eps << 117 greject = 1. - epsilon*sint2/(1.+ epsilonsq); 115 118 116 } while (greject < G4UniformRand()); 119 } while (greject < G4UniformRand()); 117 << 120 118 // 121 // 119 // scattered gamma angles. ( Z - axis along 122 // scattered gamma angles. ( Z - axis along the parent gamma) 120 // 123 // 121 124 122 G4double cosTeta = 1. - onecost; << 125 G4double cosTeta = 1. - onecost; 123 G4double sinTeta = sqrt(sint2); << 126 G4double sinTeta = sqrt (sint2); 124 G4double Phi = twopi * G4UniformRand(); << 127 G4double Phi = twopi * G4UniformRand(); 125 G4double dirx = sinTeta * cos(Phi), diry = s << 128 G4double dirx = sinTeta*cos(Phi), diry = sinTeta*sin(Phi), dirz = cosTeta; 126 129 127 // 130 // 128 // update G4VParticleChange for the scattere 131 // update G4VParticleChange for the scattered gamma 129 // 132 // 130 // beam regeneration trick : restore inciden 133 // beam regeneration trick : restore incident beam 131 << 134 132 G4ThreeVector gamDirection1(dirx, diry, dirz << 135 G4ThreeVector gamDirection1 ( dirx,diry,dirz ); 133 gamDirection1.rotateUz(gamDirection0); 136 gamDirection1.rotateUz(gamDirection0); 134 G4double gamEnergy1 = epsilon * gamEnergy0; << 137 G4double gamEnergy1 = epsilon*gamEnergy0; 135 fParticleChange->SetProposedKineticEnergy(ga 138 fParticleChange->SetProposedKineticEnergy(gamEnergy0); 136 fParticleChange->ProposeMomentumDirection(ga 139 fParticleChange->ProposeMomentumDirection(gamDirection0); 137 140 138 // 141 // 139 // kinematic of the scattered electron 142 // kinematic of the scattered electron 140 // 143 // 141 144 142 G4double eKinEnergy = gamEnergy0 - gamEnergy 145 G4double eKinEnergy = gamEnergy0 - gamEnergy1; 143 146 144 if (eKinEnergy > DBL_MIN) { << 147 if(eKinEnergy > DBL_MIN) { 145 G4ThreeVector eDirection = gamEnergy0 * ga << 148 G4ThreeVector eDirection >> 149 = gamEnergy0*gamDirection0 - gamEnergy1*gamDirection1; 146 eDirection = eDirection.unit(); 150 eDirection = eDirection.unit(); 147 151 148 // create G4DynamicParticle object for the 152 // create G4DynamicParticle object for the electron. 149 G4DynamicParticle* dp = new G4DynamicParti << 153 G4DynamicParticle* dp >> 154 = new G4DynamicParticle(theElectron,eDirection,eKinEnergy); 150 fvect->push_back(dp); 155 fvect->push_back(dp); 151 } 156 } 152 } 157 } 153 158 154 //....oooOO0OOooo........oooOO0OOooo........oo 159 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 160 >> 161 155 162