Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file medical/fanoCavity/src/MyKleinNishin << 26 // $Id: MyKleinNishinaCompton.cc,v 1.5 2007/10/01 15:19:57 maire Exp $ 27 /// \brief Implementation of the MyKleinNishin << 27 // GEANT4 tag $Name: geant4-09-02-patch-04 $ 28 // << 29 // 28 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 29 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 31 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 32 31 33 #include "MyKleinNishinaCompton.hh" 32 #include "MyKleinNishinaCompton.hh" 34 << 35 #include "DetectorConstruction.hh" 33 #include "DetectorConstruction.hh" 36 #include "MyKleinNishinaMessenger.hh" << 37 34 38 #include "G4DataVector.hh" << 39 #include "G4Electron.hh" 35 #include "G4Electron.hh" 40 #include "G4Gamma.hh" 36 #include "G4Gamma.hh" 41 #include "G4ParticleChangeForGamma.hh" << 42 #include "G4PhysicalConstants.hh" << 43 #include "Randomize.hh" 37 #include "Randomize.hh" >> 38 #include "G4DataVector.hh" >> 39 #include "G4ParticleChangeForGamma.hh" 44 40 45 //....oooOO0OOooo........oooOO0OOooo........oo 41 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 42 47 using namespace std; 43 using namespace std; 48 44 49 MyKleinNishinaCompton::MyKleinNishinaCompton(D << 45 MyKleinNishinaCompton::MyKleinNishinaCompton(DetectorConstruction* det, >> 46 const G4ParticleDefinition*, 50 c 47 const G4String& nam) 51 : G4KleinNishinaCompton(0, nam), fDetector(d << 48 :G4KleinNishinaCompton(0,nam), detector(det) 52 { 49 { 53 fCrossSectionFactor = 1.; << 50 CrossSectionFactor = 1.; 54 fMessenger = new MyKleinNishinaMessenger(thi << 55 } 51 } 56 52 57 //....oooOO0OOooo........oooOO0OOooo........oo 53 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 58 54 59 MyKleinNishinaCompton::~MyKleinNishinaCompton( 55 MyKleinNishinaCompton::~MyKleinNishinaCompton() 60 { << 56 {} 61 delete fMessenger; << 62 } << 63 57 64 //....oooOO0OOooo........oooOO0OOooo........oo 58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 65 59 66 G4double MyKleinNishinaCompton::CrossSectionPe << 60 G4double MyKleinNishinaCompton::CrossSectionPerVolume( 67 << 61 const G4Material* mat, 68 << 62 const G4ParticleDefinition* part, >> 63 G4double GammaEnergy, >> 64 G4double, G4double) 69 { 65 { 70 G4double xsection = G4VEmModel::CrossSection << 66 G4double CrossSection = >> 67 G4VEmModel::CrossSectionPerVolume(mat,part,GammaEnergy); 71 68 72 return xsection * fCrossSectionFactor; << 69 return CrossSection*CrossSectionFactor; 73 } 70 } 74 //....oooOO0OOooo........oooOO0OOooo........oo 71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 72 76 void MyKleinNishinaCompton::SampleSecondaries( << 73 void MyKleinNishinaCompton::SampleSecondaries( 77 << 74 std::vector<G4DynamicParticle*>* fvect, 78 << 75 const G4MaterialCutsCouple*, 79 << 76 const G4DynamicParticle* aDynamicGamma, >> 77 G4double, >> 78 G4double) 80 { 79 { 81 // The scattered gamma energy is sampled acc 80 // The scattered gamma energy is sampled according to Klein - Nishina formula. 82 // The random number techniques of Butcher & << 81 // The random number techniques of Butcher & Messel are used 83 // (Nuc Phys 20(1960),15). 82 // (Nuc Phys 20(1960),15). 84 // Note : Effects due to binding of atomic e 83 // Note : Effects due to binding of atomic electrons are negliged. 85 << 84 86 G4double gamEnergy0 = aDynamicGamma->GetKine 85 G4double gamEnergy0 = aDynamicGamma->GetKineticEnergy(); 87 G4double E0_m = gamEnergy0 / electron_mass_c << 86 G4double E0_m = gamEnergy0 / electron_mass_c2 ; 88 87 89 G4ThreeVector gamDirection0 = aDynamicGamma- 88 G4ThreeVector gamDirection0 = aDynamicGamma->GetMomentumDirection(); 90 89 91 // 90 // 92 // sample the energy rate of the scattered g << 91 // sample the energy rate of the scattered gamma 93 // 92 // 94 93 95 G4double epsilon, epsilonsq, onecost, sint2, << 94 G4double epsilon, epsilonsq, onecost, sint2, greject ; 96 95 97 G4double eps0 = 1. / (1. + 2. * E0_m); << 96 G4double epsilon0 = 1./(1. + 2.*E0_m); 98 G4double eps0sq = eps0 * eps0; << 97 G4double epsilon0sq = epsilon0*epsilon0; 99 G4double alpha1 = -log(eps0); << 98 G4double alpha1 = - log(epsilon0); 100 G4double alpha2 = 0.5 * (1. - eps0sq); << 99 G4double alpha2 = 0.5*(1.- epsilon0sq); 101 100 102 do { 101 do { 103 if (alpha1 / (alpha1 + alpha2) > G4Uniform << 102 if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) { 104 epsilon = exp(-alpha1 * G4UniformRand()) << 103 epsilon = exp(-alpha1*G4UniformRand()); // epsilon0**r 105 epsilonsq = epsilon * epsilon; << 104 epsilonsq = epsilon*epsilon; 106 } << 105 107 else { << 106 } else { 108 epsilonsq = eps0sq + (1. - eps0sq) * G4U << 107 epsilonsq = epsilon0sq + (1.- epsilon0sq)*G4UniformRand(); 109 epsilon = sqrt(epsilonsq); << 108 epsilon = sqrt(epsilonsq); 110 }; 109 }; 111 110 112 onecost = (1. - epsilon) / (epsilon * E0_m << 111 onecost = (1.- epsilon)/(epsilon*E0_m); 113 sint2 = onecost * (2. - onecost); << 112 sint2 = onecost*(2.-onecost); 114 greject = 1. - epsilon * sint2 / (1. + eps << 113 greject = 1. - epsilon*sint2/(1.+ epsilonsq); 115 114 116 } while (greject < G4UniformRand()); 115 } while (greject < G4UniformRand()); 117 << 116 118 // 117 // 119 // scattered gamma angles. ( Z - axis along 118 // scattered gamma angles. ( Z - axis along the parent gamma) 120 // 119 // 121 120 122 G4double cosTeta = 1. - onecost; << 121 G4double cosTeta = 1. - onecost; 123 G4double sinTeta = sqrt(sint2); << 122 G4double sinTeta = sqrt (sint2); 124 G4double Phi = twopi * G4UniformRand(); << 123 G4double Phi = twopi * G4UniformRand(); 125 G4double dirx = sinTeta * cos(Phi), diry = s << 124 G4double dirx = sinTeta*cos(Phi), diry = sinTeta*sin(Phi), dirz = cosTeta; 126 125 127 // 126 // 128 // update G4VParticleChange for the scattere 127 // update G4VParticleChange for the scattered gamma 129 // 128 // 130 // beam regeneration trick : restore inciden 129 // beam regeneration trick : restore incident beam 131 << 130 132 G4ThreeVector gamDirection1(dirx, diry, dirz << 131 G4ThreeVector gamDirection1 ( dirx,diry,dirz ); 133 gamDirection1.rotateUz(gamDirection0); 132 gamDirection1.rotateUz(gamDirection0); 134 G4double gamEnergy1 = epsilon * gamEnergy0; << 133 G4double gamEnergy1 = epsilon*gamEnergy0; 135 fParticleChange->SetProposedKineticEnergy(ga 134 fParticleChange->SetProposedKineticEnergy(gamEnergy0); 136 fParticleChange->ProposeMomentumDirection(ga 135 fParticleChange->ProposeMomentumDirection(gamDirection0); 137 136 138 // 137 // 139 // kinematic of the scattered electron 138 // kinematic of the scattered electron 140 // 139 // 141 140 142 G4double eKinEnergy = gamEnergy0 - gamEnergy 141 G4double eKinEnergy = gamEnergy0 - gamEnergy1; 143 142 144 if (eKinEnergy > DBL_MIN) { << 143 if(eKinEnergy > DBL_MIN) { 145 G4ThreeVector eDirection = gamEnergy0 * ga << 144 G4ThreeVector eDirection >> 145 = gamEnergy0*gamDirection0 - gamEnergy1*gamDirection1; 146 eDirection = eDirection.unit(); 146 eDirection = eDirection.unit(); 147 147 148 // create G4DynamicParticle object for the 148 // create G4DynamicParticle object for the electron. 149 G4DynamicParticle* dp = new G4DynamicParti << 149 G4DynamicParticle* dp >> 150 = new G4DynamicParticle(theElectron,eDirection,eKinEnergy); 150 fvect->push_back(dp); 151 fvect->push_back(dp); 151 } 152 } 152 } 153 } 153 154 154 //....oooOO0OOooo........oooOO0OOooo........oo 155 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 156 >> 157 155 158