Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file medical/fanoCavity/src/MyKleinNishin 26 /// \file medical/fanoCavity/src/MyKleinNishinaCompton.cc 27 /// \brief Implementation of the MyKleinNishin 27 /// \brief Implementation of the MyKleinNishinaCompton class 28 // 28 // 29 // 29 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 31 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 32 32 33 #include "MyKleinNishinaCompton.hh" 33 #include "MyKleinNishinaCompton.hh" 34 << 35 #include "DetectorConstruction.hh" << 36 #include "MyKleinNishinaMessenger.hh" 34 #include "MyKleinNishinaMessenger.hh" >> 35 #include "DetectorConstruction.hh" 37 36 38 #include "G4DataVector.hh" << 39 #include "G4Electron.hh" 37 #include "G4Electron.hh" 40 #include "G4Gamma.hh" 38 #include "G4Gamma.hh" >> 39 #include "Randomize.hh" >> 40 #include "G4DataVector.hh" 41 #include "G4ParticleChangeForGamma.hh" 41 #include "G4ParticleChangeForGamma.hh" 42 #include "G4PhysicalConstants.hh" 42 #include "G4PhysicalConstants.hh" 43 #include "Randomize.hh" << 44 43 45 //....oooOO0OOooo........oooOO0OOooo........oo 44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 45 47 using namespace std; 46 using namespace std; 48 47 49 MyKleinNishinaCompton::MyKleinNishinaCompton(D << 48 MyKleinNishinaCompton::MyKleinNishinaCompton(DetectorConstruction* det, >> 49 const G4ParticleDefinition*, 50 c 50 const G4String& nam) 51 : G4KleinNishinaCompton(0, nam), fDetector(d << 51 :G4KleinNishinaCompton(0,nam), fDetector(det), fMessenger(0) 52 { 52 { 53 fCrossSectionFactor = 1.; 53 fCrossSectionFactor = 1.; 54 fMessenger = new MyKleinNishinaMessenger(thi << 54 fMessenger = new MyKleinNishinaMessenger(this); 55 } 55 } 56 56 57 //....oooOO0OOooo........oooOO0OOooo........oo 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 58 58 59 MyKleinNishinaCompton::~MyKleinNishinaCompton( 59 MyKleinNishinaCompton::~MyKleinNishinaCompton() 60 { << 60 { 61 delete fMessenger; << 61 delete fMessenger; 62 } 62 } 63 63 64 //....oooOO0OOooo........oooOO0OOooo........oo 64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 65 65 66 G4double MyKleinNishinaCompton::CrossSectionPe << 66 G4double MyKleinNishinaCompton::CrossSectionPerVolume( 67 << 67 const G4Material* mat, 68 << 68 const G4ParticleDefinition* part, >> 69 G4double GammaEnergy, >> 70 G4double, G4double) 69 { 71 { 70 G4double xsection = G4VEmModel::CrossSection << 72 G4double xsection = G4VEmModel::CrossSectionPerVolume(mat,part,GammaEnergy); 71 73 72 return xsection * fCrossSectionFactor; << 74 return xsection*fCrossSectionFactor; 73 } 75 } 74 //....oooOO0OOooo........oooOO0OOooo........oo 76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 77 76 void MyKleinNishinaCompton::SampleSecondaries( << 78 void MyKleinNishinaCompton::SampleSecondaries( 77 << 79 std::vector<G4DynamicParticle*>* fvect, 78 << 80 const G4MaterialCutsCouple*, 79 << 81 const G4DynamicParticle* aDynamicGamma, >> 82 G4double, >> 83 G4double) 80 { 84 { 81 // The scattered gamma energy is sampled acc 85 // The scattered gamma energy is sampled according to Klein - Nishina formula. 82 // The random number techniques of Butcher & << 86 // The random number techniques of Butcher & Messel are used 83 // (Nuc Phys 20(1960),15). 87 // (Nuc Phys 20(1960),15). 84 // Note : Effects due to binding of atomic e 88 // Note : Effects due to binding of atomic electrons are negliged. 85 << 89 86 G4double gamEnergy0 = aDynamicGamma->GetKine 90 G4double gamEnergy0 = aDynamicGamma->GetKineticEnergy(); 87 G4double E0_m = gamEnergy0 / electron_mass_c << 91 G4double E0_m = gamEnergy0 / electron_mass_c2 ; 88 92 89 G4ThreeVector gamDirection0 = aDynamicGamma- 93 G4ThreeVector gamDirection0 = aDynamicGamma->GetMomentumDirection(); 90 94 91 // 95 // 92 // sample the energy rate of the scattered g << 96 // sample the energy rate of the scattered gamma 93 // 97 // 94 98 95 G4double epsilon, epsilonsq, onecost, sint2, << 99 G4double epsilon, epsilonsq, onecost, sint2, greject ; 96 100 97 G4double eps0 = 1. / (1. + 2. * E0_m); << 101 G4double eps0 = 1./(1. + 2.*E0_m); 98 G4double eps0sq = eps0 * eps0; << 102 G4double eps0sq = eps0*eps0; 99 G4double alpha1 = -log(eps0); << 103 G4double alpha1 = - log(eps0); 100 G4double alpha2 = 0.5 * (1. - eps0sq); << 104 G4double alpha2 = 0.5*(1.- eps0sq); 101 105 102 do { 106 do { 103 if (alpha1 / (alpha1 + alpha2) > G4Uniform << 107 if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) { 104 epsilon = exp(-alpha1 * G4UniformRand()) << 108 epsilon = exp(-alpha1*G4UniformRand()); // eps0**r 105 epsilonsq = epsilon * epsilon; << 109 epsilonsq = epsilon*epsilon; 106 } << 110 107 else { << 111 } else { 108 epsilonsq = eps0sq + (1. - eps0sq) * G4U << 112 epsilonsq = eps0sq + (1.- eps0sq)*G4UniformRand(); 109 epsilon = sqrt(epsilonsq); << 113 epsilon = sqrt(epsilonsq); 110 }; 114 }; 111 115 112 onecost = (1. - epsilon) / (epsilon * E0_m << 116 onecost = (1.- epsilon)/(epsilon*E0_m); 113 sint2 = onecost * (2. - onecost); << 117 sint2 = onecost*(2.-onecost); 114 greject = 1. - epsilon * sint2 / (1. + eps << 118 greject = 1. - epsilon*sint2/(1.+ epsilonsq); 115 119 116 } while (greject < G4UniformRand()); 120 } while (greject < G4UniformRand()); 117 << 121 118 // 122 // 119 // scattered gamma angles. ( Z - axis along 123 // scattered gamma angles. ( Z - axis along the parent gamma) 120 // 124 // 121 125 122 G4double cosTeta = 1. - onecost; << 126 G4double cosTeta = 1. - onecost; 123 G4double sinTeta = sqrt(sint2); << 127 G4double sinTeta = sqrt (sint2); 124 G4double Phi = twopi * G4UniformRand(); << 128 G4double Phi = twopi * G4UniformRand(); 125 G4double dirx = sinTeta * cos(Phi), diry = s << 129 G4double dirx = sinTeta*cos(Phi), diry = sinTeta*sin(Phi), dirz = cosTeta; 126 130 127 // 131 // 128 // update G4VParticleChange for the scattere 132 // update G4VParticleChange for the scattered gamma 129 // 133 // 130 // beam regeneration trick : restore inciden 134 // beam regeneration trick : restore incident beam 131 << 135 132 G4ThreeVector gamDirection1(dirx, diry, dirz << 136 G4ThreeVector gamDirection1 ( dirx,diry,dirz ); 133 gamDirection1.rotateUz(gamDirection0); 137 gamDirection1.rotateUz(gamDirection0); 134 G4double gamEnergy1 = epsilon * gamEnergy0; << 138 G4double gamEnergy1 = epsilon*gamEnergy0; 135 fParticleChange->SetProposedKineticEnergy(ga 139 fParticleChange->SetProposedKineticEnergy(gamEnergy0); 136 fParticleChange->ProposeMomentumDirection(ga 140 fParticleChange->ProposeMomentumDirection(gamDirection0); 137 141 138 // 142 // 139 // kinematic of the scattered electron 143 // kinematic of the scattered electron 140 // 144 // 141 145 142 G4double eKinEnergy = gamEnergy0 - gamEnergy 146 G4double eKinEnergy = gamEnergy0 - gamEnergy1; 143 147 144 if (eKinEnergy > DBL_MIN) { << 148 if(eKinEnergy > DBL_MIN) { 145 G4ThreeVector eDirection = gamEnergy0 * ga << 149 G4ThreeVector eDirection >> 150 = gamEnergy0*gamDirection0 - gamEnergy1*gamDirection1; 146 eDirection = eDirection.unit(); 151 eDirection = eDirection.unit(); 147 152 148 // create G4DynamicParticle object for the 153 // create G4DynamicParticle object for the electron. 149 G4DynamicParticle* dp = new G4DynamicParti << 154 G4DynamicParticle* dp >> 155 = new G4DynamicParticle(theElectron,eDirection,eKinEnergy); 150 fvect->push_back(dp); 156 fvect->push_back(dp); 151 } 157 } 152 } 158 } 153 159 154 //....oooOO0OOooo........oooOO0OOooo........oo 160 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 161 155 162