Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/medical/fanoCavity/README

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/extended/medical/fanoCavity/README (Version 11.3.0) and /examples/extended/medical/fanoCavity/README (Version 4.1)


  1 ----------------------------------------------    
  2                                                   
  3      =========================================    
  4      Geant4 - an Object-Oriented Toolkit for S    
  5      =========================================    
  6                                                   
  7                             fanoCavity            
  8                             ----------            
  9                                                   
 10     This program computes the dose deposited i    
 11     monoenergetic photon beam.                    
 12     The geometry of the chamber satisfies the     
 13     equilibrium. Hence, under idealized condit    
 14     deposited over the beam energy fluence mus    
 15     mass_energy_transfer coefficient of the wa    
 16                                                   
 17     E.Poon and al, Phys. Med. Biol. 50 (2005)     
 18     I.Kawrakow, Med. Phys. 27-3 (2000) 499        
 19                                                   
 20  1- GEOMETRY                                      
 21                                                   
 22     The chamber is modelized as a cylinder wit    
 23                                                   
 24     6 parameters define the geometry :            
 25       - the material of the wall of the chambe    
 26       - the radius of the chamber and the thic    
 27       - the material of the cavity                
 28       - the radius and the thickness of the ca    
 29                                                   
 30     Wall and cavity must be made of the same m    
 31     density                                       
 32                                                   
 33     All above parameters can be redifined via     
 34     DetectorMessenger class                       
 35                                                   
 36                     -----------------             
 37                     |               |             
 38                     | wall          |             
 39                     |     -----     |             
 40                     |     |   |     |             
 41                     |     | <-+-----+--- cavit    
 42          ------>    |     |   |     |             
 43          ------>    |     |   |     |             
 44    beam     -------------------------------- c    
 45          ------>    |     |   |     |             
 46          ------>    |     |   |     |             
 47                     |     |   |     |             
 48                     |     |   |     |             
 49                     |     -----     |             
 50                     |               |             
 51                     |               |             
 52                     -----------------             
 53                                                   
 54  2- BEAM                                          
 55                                                   
 56     Monoenergetic incident photon beam is unif    
 57     to the flat end of the chamber. The beam r    
 58     UI command built in PrimaryGeneratorMessen    
 59     chamber radius.                               
 60                                                   
 61     Beam regeneration : after each Compton int    
 62     reset to its initial state, energy and dir    
 63     sites are uniformly distribued within the     
 64                                                   
 65     This modification must be done in the Part    
 66     of the Compton scattering interaction. The    
 67     (MyKleinNishinaCompton) is assigned to the    
 68     PhysicsList. MyKleinNishinaCompton inherit    
 69     only the function SampleSecondaries() is o    
 70                                                   
 71  3- PURPOSE OF THE PROGRAM                        
 72                                                   
 73     The program computes the dose deposited in    
 74     Dose/Beam_energy_fluence. This ratio is co    
 75     coefficient of the wall material.             
 76                                                   
 77     The mass_energy_transfer coefficient needs    
 78         - the photon total cross section, whic    
 79           by G4EmCalculator (see EndOfRunActio    
 80         - the average kinetic energy of charge    
 81           wall during the run.                    
 82                                                   
 83     The program needs high statistic to reach     
 84     The UI command /run/printProgress allows t    
 85     the kineticEnergy and dose calculations.      
 86                                                   
 87     In addition, to increase the program effic    
 88     which have no chance to reach the cavity a    
 89     StackinAction). This feature can be switch    
 90     StackingMessenger).                           
 91                                                   
 92     The simplest way to study the effect of e-    
 93     deposition is to use the command /testem/s    
 94                                                   
 95  4- PHYSICS                                       
 96                                                   
 97     The physics lists contains the standard el    
 98     modifications listed here.                    
 99                                                   
100     - Compton scattering : as explained above,    
101     MyKleinNishinaCompton class.                  
102                                                   
103     In order to make the program more efficien    
104     cross section via the function SetCSFactor    
105     associated UI command. Default is factor=1    
106                                                   
107     - Bremsstrahlung : Fano conditions imply n    
108     bremsstrahlung radiation. Therefore this p    
109     physics list. However, it is always possib    
110     See PhysListEmStandard class.                 
111                                                   
112     - Ionisation : In order to have same stopp    
113     must cancel the density correction term in    
114     a specific MollerBhabha model (MyMollerBha    
115     G4MollerBhabhaModel.                          
116                                                   
117     To prevent explicit generation of delta-ra    
118     threshold (i.e. cut) is set to 10 km (CSDA    
119                                                   
120     The finalRange of the step function is set    
121     correspond to a tracking cut in water of a    
122     Once again, the above parameters can be co    
123                                                   
124     - Multiple scattering : is switched in sin    
125     boundaries. This is selected via EM option    
126     controled with UI commands.                   
127                                                   
128     - All PhysicsTables are built with 100 bin    
129                                                   
130  5- HISTOGRAMS                                    
131                                                   
132    fanoCavity has several predefined 1D histog    
133                                                   
134       1 : emission point of e+-                   
135       2 : energy spectrum of e+-                  
136       3 : theta distribution of e+-               
137       4 : emission point of e+- hitting cavity    
138       5 : energy spectrum of e+- when entering    
139       6 : theta distribution of e+- before ent    
140       7 : theta distribution of e+- at first s    
141       8 : track segment of e+- in cavity          
142       9 : step size of e+- in wall                
143      10 : step size of e+- in cavity              
144      11 : energy deposit in cavity per track      
145                                                   
146    The histograms are managed by G4AnalysisMan    
147    The histos can be individually activated wi    
148    /analysis/h1/set id nbBins  valMin valMax u    
149    where unit is the desired unit for the hist    
150                                                   
151    One can control the name of the histograms     
152    /analysis/setFileName  name  (default fanoC    
153                                                   
154    It is possible to choose the format of the     
155    hdf5, xml, csv, by changing the default fil    
156                                                   
157    It is also possible to print selected histo    
158    /analysis/h1/setAscii id                       
159    All selected histos will be written on a fi    
160                                                   
161  6- HOW TO START ?                                
162                                                   
163     - execute fanoCavity in 'batch' mode from     
164         % fanoCavity   run01.mac                  
165                                                   
166     - execute fanoCavity in 'interactive mode'    
167         % fanoCavity                              
168         ....                                      
169         Idle> type your commands                  
170         ....                                      
171         Idle> exit                                
172                                                   
173    Alternative macro file:                        
174    basic.mac - disabled  multiple scattering a