Geant4 Cross Reference |
>> 1 ------------------------------------------------------------------- >> 2 ------------------------------------------------------------------- >> 3 1 ========================================= 4 ========================================================= 2 Geant4 - microdosimetry example << 5 Geant4 - Microdosimetry example 3 ========================================= 6 ========================================================= 4 7 5 README file 8 README file 6 -------------------- 9 ---------------------- 7 10 8 CORRESPONDING AUTHO << 11 CORRESPONDING AUTHOR 9 << 10 S. Incerti (a, *), H. Tran (a, *), V. Ivantche << 11 a. LP2i, IN2P3 / CNRS / Bordeaux University, 3 << 12 b. G4AI Ltd., UK << 13 * e-mail: incerti@lp2ib.in2p3.fr or tran@lp2ib << 14 12 15 ---->0. INTRODUCTION << 13 S. Incerti (a, *), V. Ivantchenko (b), M. Karamitros (a) >> 14 a. Centre d'Etudes Nucleaires de Bordeaux-Gradignan >> 15 (CENBG), IN2P3 / CNRS / Bordeaux 1 University, 33175 Gradignan, France >> 16 b. G4AI Ltd, UK >> 17 * e-mail:incerti@cenbg.in2p3.fr >> 18 >> 19 ---->0. INTRODUCTION. >> 20 >> 21 The microdosimetry example simulates the track of two 5 MeV protons in liquid water. >> 22 Geant4 standard EM models are used in the World volume while Geant4-DNA models >> 23 are used in a Target volume, declared as a Region. 16 24 17 The microdosimetry example shows how to use Ge << 25 This example is provided by the Geant4-DNA collaboration. 18 in different regions of the geometry. << 19 26 20 The Geant4-DNA processes and models are furthe << 27 These processes and models are further described at: 21 http://geant4-dna.org 28 http://geant4-dna.org 22 29 23 Any report or published results obtained using << 30 Any report or published results obtained using the Geant4-DNA software shall 24 cite the following Geant4-DNA collaboration pu 31 cite the following Geant4-DNA collaboration publications: 25 Med. Phys. 51 (2024) 5873–5889 << 26 Med. Phys. 45 (2018) e722-e739 << 27 Phys. Med. 31 (2015) 861-874 32 Phys. Med. 31 (2015) 861-874 28 Med. Phys. 37 (2010) 4692-4708 33 Med. Phys. 37 (2010) 4692-4708 29 Int. J. Model. Simul. Sci. Comput. 1 (2010) 15 << 30 << 31 ---->1. GEOMETRY SET-UP << 32 34 33 The geometry is a 10-micron side cube (World) << 35 We also suggest these other references related to this example: 34 material) containing a 2 micron-thick slice (a << 36 Nucl. Instrum. and Meth. B 273 (2012) 95-97 >> 37 Prog. Nucl. Sci. Tec. 2 (2011) 898-903 35 38 36 Particles are shot from the World volume. << 39 ---->1. GEOMETRY SET-UP. >> 40 >> 41 The geometry is a 1 mm side cube (World) made of liquid water containing a smaller cubic Target volume of liquid >> 42 water, which dimensions are twenty times smaller than the dimensions of the World volume. 37 43 38 The variable density feature of materials is i << 44 --->2. SET-UP 39 The material can be changed directly in microd << 45 >> 46 Make sure G4LEDATA points to the low energy electromagnetic libraries. 40 47 41 ---->2. SET-UP << 48 The code can be compiled with cmake. 42 49 43 Make sure $G4LEDATA points to the low energy e << 50 It works in MT mode. 44 51 45 ---->3. HOW TO RUN THE EXAMPLE << 52 ---->3. HOW TO RUN THE EXAMPLE 46 53 47 In interactive mode, run: << 54 Normal mode, run: 48 55 49 ./microdosimetry << 56 ./microdosimetry -mt 2 -out microdosimetry 50 << 51 In batch, the macro microdosimetry.in can be u << 52 particle types. << 53 << 54 ---->4. PHYSICS << 55 57 56 The PhysicsList uses Geant4 Physics in the Wor << 58 (or more generally 57 in the Target region. << 59 ./microdosimetry -mt 2 -out myRootFile >> 60 ) 58 61 59 1) Geant4 Physics in the World is selected via << 62 The macro microdosimetry.in is executed by default; to select another one: 60 63 61 /dna/test/addPhysics X << 64 ./microdosimetry -mac myMacro.mac 62 65 63 where X is any EM physics list, such as emstan << 66 To get visualization and interactivity: 64 67 65 2) Geant4-DNA activator is used in the regionT << 68 ./microdosimetry -gui >> 69 ( OGL used by default) 66 70 67 /process/em/AddDNARegion regionTarget DNA_OptY << 71 or you may use your own visualization driver, for instance: >> 72 ./microdosimetry -vis "DAWNFILE" 68 73 69 where Y = 0, 2, 4, or 6. << 74 ---->4. PHYSICS 70 << 71 3) In addition to 1) or 2), to enable radioact << 72 << 73 /dna/test/addPhysics raddecay << 74 75 75 4) Warning regarding ions: when the incident p << 76 This example shows: 76 (/gun/particle ion), specified with Z and A nu << 77 - how to use the Geant4-DNA processes, 77 the Rudd ionisation extended model is used. Th << 78 - how to count and save occurrences of processes 78 by default down to 0.5 MeV/u. This tracking cu << 79 - how to combine them with Standard EM Physics. 79 80 80 /dna/test/addIonsTrackingCut false << 81 A simple electron capture process is also provided in order to kill electrons >> 82 below a chosen energy threshold, set in the Physics list. 81 83 >> 84 Look at the PhyscisList.cc file. 82 85 83 ---->5. SIMULATION OUTPUT AND RESULT ANALYSIS << 86 ---->5. SIMULATION OUTPUT AND RESULT ANALYSIS 84 87 85 The output results consists in a dna.root file 88 The output results consists in a dna.root file, containing for each simulation step: 86 - the type of particle for the current step 89 - the type of particle for the current step 87 - the type of process for the current step 90 - the type of process for the current step 88 - the step PostStepPoint coordinates (in nm) << 91 - the track position of the current step (in nanometers) 89 - the energy deposit along the current step (i 92 - the energy deposit along the current step (in eV) 90 - the step length (in nm) 93 - the step length (in nm) 91 - the total energy loss along the current step 94 - the total energy loss along the current step (in eV) 92 - the kinetic energy at PreStepPoint (in eV) << 95 - the kinetic energy at PreStepPoint 93 - the cos of the scattering angle 96 - the cos of the scattering angle 94 - the event ID 97 - the event ID 95 - the track ID 98 - the track ID 96 - the parent track ID 99 - the parent track ID 97 - the step number 100 - the step number 98 101 99 This information is extracted from the Steppin << 102 This file can be easily analyzed using for example the provided ROOT macro 100 << 101 The ROOT file can be easily analyzed using for << 102 file plot.C; to do so : 103 file plot.C; to do so : 103 * be sure to have ROOT installed on your machi 104 * be sure to have ROOT installed on your machine 104 * be sure to be in the directory containing th << 105 * be sure to be in the microdosimetry directory 105 * copy plot.C into this directory << 106 * launch ROOT by typing root 106 * from there, launch ROOT by typing root << 107 * under your ROOT session, type in : .X plot.C 107 * under your ROOT session, type in : .X plot.C to execute the macro file 108 * alternatively you can type directly under yo 108 * alternatively you can type directly under your session : root plot.C 109 109 110 The naming scheme on the displayed ROOT plots << 110 The naming scheme on the displayed ROOT plots is as follows (see SteppingAction.cc), 111 << 111 as in the 'dnaphysics' example: 112 -particles << 113 112 114 gamma: 0 << 113 -particles: 115 e-: 1 << 114 gamma : 0 116 proton: 2 << 115 e- : 1 117 hydrogen: 3 << 116 proton : 2 118 alpha: 4 << 117 hydrogen : 3 119 alpha+: 5 << 118 alpha : 4 120 helium: 6 << 119 alpha+ : 5 121 << 120 helium : 6 122 -processes << 121 123 << 122 -processes: 124 Capture: 1 << 123 125 (only if one uses G4EmmicrodosimetryActivator << 124 eCapture 1 126 << 125 (only if one uses G4EmDNAPhysicsActivator in PhysicsList) 127 e-_G4DNAElectronSolvation: 10 << 126 128 e-_G4DNAElastic: 11 << 127 e-_G4DNAElectronSolvation 10 129 e-_G4DNAExcitation: 12 << 128 e-_G4DNAElastic 11 130 e-_G4DNAIonisation: 13 << 129 e-_G4DNAExcitation 12 131 e-_G4DNAAttachment: 14 << 130 e-_G4DNAIonisation 13 132 e-_G4DNAVibExcitation: 15 << 131 e-_G4DNAAttachment 14 133 msc: 110 << 132 e-_G4DNAVibExcitation 15 134 CoulombScat: 120 << 133 msc 110 135 eIoni: 130 << 134 CoulombScat 120 136 << 135 eIoni 130 137 proton_G4DNAElastic: 21 << 136 138 proton_G4DNAExcitation: 22 << 137 proton_G4DNAElastic 21 139 proton_G4DNAIonisation: 23 << 138 proton_G4DNAExcitation 22 140 proton_G4DNAChargeDecrease: 24 << 139 proton_G4DNAIonisation 23 141 msc: 210 << 140 proton_G4DNAChargeDecrease 24 142 CoulombScat: 220 << 141 msc 210 143 hIoni: 230 << 142 CoulombScat 220 144 nuclearStopping: 240 << 143 hIoni 230 145 << 144 nuclearStopping 240 146 hydrogen_G4DNAElastic: 31 << 145 147 hydrogen_G4DNAExcitation: 32 << 146 hydrogen_G4DNAElastic 31 148 hydrogen_G4DNAIonisation: 33 << 147 hydrogen_G4DNAExcitation 32 149 hydrogen_G4DNAChargeIncrease: 35 << 148 hydrogen_G4DNAIonisation 33 150 << 149 hydrogen_G4DNAChargeIncrease 35 151 alpha_G4DNAElastic: 41 << 150 152 alpha_G4DNAExcitation: 42 << 151 alpha_G4DNAElastic 41 153 alpha_G4DNAIonisation: 43 << 152 alpha_G4DNAExcitation 42 154 alpha_G4DNAChargeDecrease: 44 << 153 alpha_G4DNAIonisation 43 155 msc: 410 << 154 alpha_G4DNAChargeDecrease 44 156 CoulombScat: 420 << 155 msc 410 157 ionIoni: 430 << 156 CoulombScat 420 158 nuclearStopping: 440 << 157 ionIoni 430 159 << 158 nuclearStopping 440 160 alpha+_G4DNAElastic: 51 << 159 161 alpha+_G4DNAExcitation: 52 << 160 alpha+_G4DNAElastic 51 162 alpha+_G4DNAIonisation: 53 << 161 alpha+_G4DNAExcitation 52 163 alpha+_G4DNAChargeDecrease: 54 << 162 alpha+_G4DNAIonisation 53 164 alpha+_G4DNAChargeIncrease: 55 << 163 alpha+_G4DNAChargeDecrease 54 165 msc: 510 << 164 alpha+_G4DNAChargeIncrease 55 166 CoulombScat: 520 << 165 msc 510 167 hIoni: 530 << 166 CoulombScat 520 168 nuclearStopping: 540 << 167 hIoni 530 169 << 168 nuclearStopping 540 170 helium_G4DNAElastic: 61 << 169 171 helium_G4DNAExcitation: 62 << 170 helium_G4DNAElastic 61 172 helium_G4DNAIonisation: 63 << 171 helium_G4DNAExcitation 62 173 helium_G4DNAChargeIncrease: 65 << 172 helium_G4DNAIonisation 63 174 << 173 helium_G4DNAChargeIncrease 65 175 GenericIon_G4DNAIonisation: 73 << 174 176 msc: 710 << 175 GenericIon_G4DNAIonisation 73 177 CoulombSca: 720 << 176 msc 710 178 ionIoni: 730 << 177 CoulombScat 720 179 nuclearStopping: 740 << 178 ionIoni 730 180 << 179 nuclearStopping 740 181 phot: 81 << 182 compt: 82 << 183 conv: 83 << 184 Rayl: 84 << 185 180 186 ---------------------------------------------- 181 --------------------------------------------------------------------------- 187 182 188 Should you have any enquiry, please do not hes << 183 Should you have any enquiry, please do not hesitate to contact: 189 incerti@lp2ib.in2p3.fr or tran@lp2ib.in2p3.fr << 184 incerti@cenbg.in2p3.fr