Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/medical/dna/microdosimetry/README

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/extended/medical/dna/microdosimetry/README (Version 11.3.0) and /examples/extended/medical/dna/microdosimetry/README (Version 10.6.p1)


                                                   >>   1 -------------------------------------------------------------------
                                                   >>   2 -------------------------------------------------------------------
                                                   >>   3 
  1      =========================================      4      =========================================================
  2       Geant4 - microdosimetry example          <<   5       Geant4 - Microdosimetry example
  3      =========================================      6      =========================================================
  4                                                     7 
  5                                 README file         8                                 README file
  6                           --------------------      9                           ----------------------
  7                                                    10 
  8                            CORRESPONDING AUTHO <<  11                            CORRESPONDING AUTHOR 
  9                                                << 
 10 S. Incerti (a, *), H. Tran (a, *), V. Ivantche << 
 11 a. LP2i, IN2P3 / CNRS / Bordeaux University, 3 << 
 12 b. G4AI Ltd., UK                               << 
 13 * e-mail: incerti@lp2ib.in2p3.fr or tran@lp2ib << 
 14                                                    12 
 15 ---->0. INTRODUCTION                           <<  13 S. Incerti (a, *), V. Ivantchenko (b), M. Karamitros (a)
                                                   >>  14 a. Centre d'Etudes Nucleaires de Bordeaux-Gradignan 
                                                   >>  15 (CENBG), IN2P3 / CNRS / Bordeaux 1 University, 33175 Gradignan, France
                                                   >>  16 b. G4AI Ltd, UK
                                                   >>  17 * e-mail:incerti@cenbg.in2p3.fr 
                                                   >>  18 
                                                   >>  19 ---->0. INTRODUCTION.                                                    
                                                   >>  20                                                                        
                                                   >>  21 The microdosimetry example simulates the track of two 5 MeV protons in liquid water. 
                                                   >>  22 Geant4 standard EM models are used in the World volume while Geant4-DNA models
                                                   >>  23 are used in a Target volume, declared as a Region.
 16                                                    24 
 17 The microdosimetry example shows how to use Ge <<  25 This example is provided by the Geant4-DNA collaboration.
 18 in different regions of the geometry.          << 
 19                                                    26 
 20 The Geant4-DNA processes and models are furthe <<  27 These processes and models are further described at:
 21 http://geant4-dna.org                              28 http://geant4-dna.org
 22                                                    29 
 23 Any report or published results obtained using <<  30 Any report or published results obtained using the Geant4-DNA software shall 
 24 cite the following Geant4-DNA collaboration pu     31 cite the following Geant4-DNA collaboration publications:
 25 Med. Phys. 51 (2024) 5873–5889               << 
 26 Med. Phys. 45 (2018) e722-e739                 << 
 27 Phys. Med. 31 (2015) 861-874                       32 Phys. Med. 31 (2015) 861-874
 28 Med. Phys. 37 (2010) 4692-4708                     33 Med. Phys. 37 (2010) 4692-4708
 29 Int. J. Model. Simul. Sci. Comput. 1 (2010) 15 << 
 30                                                << 
 31 ---->1. GEOMETRY SET-UP                        << 
 32                                                    34 
 33 The geometry is a 10-micron side cube (World)  <<  35 We also suggest these other references related to this example:
 34 material) containing a 2 micron-thick slice (a <<  36 Nucl. Instrum. and Meth. B 273 (2012) 95-97
                                                   >>  37 Prog. Nucl. Sci. Tec. 2 (2011) 898-903
 35                                                    38 
 36 Particles are shot from the World volume.      <<  39 ---->1. GEOMETRY SET-UP.
                                                   >>  40   
                                                   >>  41 The geometry is a 1 mm side cube (World) made of liquid water containing a smaller cubic Target volume of liquid
                                                   >>  42 water, which dimensions are twenty times smaller than the dimensions of the World volume.
 37                                                    43 
 38 The variable density feature of materials is i <<  44 --->2. SET-UP 
 39 The material can be changed directly in microd <<  45                                                                         
                                                   >>  46 Make sure G4LEDATA points to the low energy electromagnetic libraries.
 40                                                    47 
 41 ---->2. SET-UP                                 <<  48 The code can be compiled with cmake.
 42                                                    49 
 43 Make sure $G4LEDATA points to the low energy e <<  50 It works in MT mode.
 44                                                    51 
 45 ---->3. HOW TO RUN THE EXAMPLE                 <<  52 ---->3. HOW TO RUN THE EXAMPLE                                         
 46                                                    53 
 47 In interactive mode, run:                      <<  54 Normal mode, run:
 48                                                    55 
 49 ./microdosimetry                               <<  56 ./microdosimetry -mt 2 -out microdosimetry
 50                                                << 
 51 In batch, the macro microdosimetry.in can be u << 
 52 particle types.                                << 
 53                                                << 
 54 ---->4. PHYSICS                                << 
 55                                                    57 
 56 The PhysicsList uses Geant4 Physics in the Wor <<  58 (or more generally
 57 in the Target region.                          <<  59 ./microdosimetry -mt 2 -out myRootFile
                                                   >>  60 )
 58                                                    61 
 59 1) Geant4 Physics in the World is selected via <<  62 The macro microdosimetry.in is executed by default; to select another one:
 60                                                    63 
 61 /dna/test/addPhysics X                         <<  64 ./microdosimetry -mac myMacro.mac
 62                                                    65 
 63 where X is any EM physics list, such as emstan <<  66 To get visualization and interactivity:
 64                                                    67 
 65 2) Geant4-DNA activator is used in the regionT <<  68 ./microdosimetry -gui
                                                   >>  69 ( OGL used by default)
 66                                                    70 
 67 /process/em/AddDNARegion regionTarget DNA_OptY <<  71 or you may use your own visualization driver, for instance:
                                                   >>  72 ./microdosimetry -vis "DAWNFILE"
 68                                                    73 
 69 where Y = 0, 2, 4, or 6.                       <<  74 ---->4. PHYSICS
 70                                                << 
 71 3) In addition to 1) or 2), to enable radioact << 
 72                                                << 
 73 /dna/test/addPhysics raddecay                  << 
 74                                                    75 
 75 4) Warning regarding ions: when the incident p <<  76 This example shows:
 76 (/gun/particle ion), specified with Z and A nu <<  77 - how to use the Geant4-DNA processes, 
 77 the Rudd ionisation extended model is used. Th <<  78 - how to count and save occurrences of processes
 78 by default down to 0.5 MeV/u. This tracking cu <<  79 - how to combine them with Standard EM Physics.
 79                                                    80 
 80 /dna/test/addIonsTrackingCut false             <<  81 A simple electron capture process is also provided in order to kill electrons 
                                                   >>  82 below a chosen energy threshold, set in the Physics list.
 81                                                    83 
                                                   >>  84 Look at the PhyscisList.cc file.
 82                                                    85 
 83 ---->5. SIMULATION OUTPUT AND RESULT ANALYSIS  <<  86 ---->5. SIMULATION OUTPUT AND RESULT ANALYSIS                                    
 84                                                    87 
 85 The output results consists in a dna.root file     88 The output results consists in a dna.root file, containing for each simulation step:
 86 - the type of particle for the current step        89 - the type of particle for the current step
 87 - the type of process for the current step         90 - the type of process for the current step
 88 - the step PostStepPoint coordinates (in nm)   <<  91 - the track position of the current step (in nanometers)
 89 - the energy deposit along the current step (i     92 - the energy deposit along the current step (in eV)
 90 - the step length (in nm)                          93 - the step length (in nm)
 91 - the total energy loss along the current step     94 - the total energy loss along the current step (in eV)
 92 - the kinetic energy at PreStepPoint (in eV)   <<  95 - the kinetic energy at PreStepPoint
 93 - the cos of the scattering angle                  96 - the cos of the scattering angle
 94 - the event ID                                     97 - the event ID
 95 - the track ID                                     98 - the track ID
 96 - the parent track ID                              99 - the parent track ID
 97 - the step number                                 100 - the step number
 98                                                   101 
 99 This information is extracted from the Steppin << 102 This file can be easily analyzed using for example the provided ROOT macro 
100                                                << 
101 The ROOT file can be easily analyzed using for << 
102 file plot.C; to do so :                           103 file plot.C; to do so :
103 * be sure to have ROOT installed on your machi    104 * be sure to have ROOT installed on your machine
104 * be sure to be in the directory containing th << 105 * be sure to be in the microdosimetry directory
105 * copy plot.C into this directory              << 106 * launch ROOT by typing root
106 * from there, launch ROOT by typing root       << 
107 * under your ROOT session, type in : .X plot.C    107 * under your ROOT session, type in : .X plot.C to execute the macro file
108 * alternatively you can type directly under yo    108 * alternatively you can type directly under your session : root plot.C
109                                                   109 
110 The naming scheme on the displayed ROOT plots  << 110 The naming scheme on the displayed ROOT plots is as follows (see SteppingAction.cc),
111                                                << 111 as in the 'dnaphysics' example:
112 -particles                                     << 
113                                                   112 
114 gamma: 0                                       << 113 -particles:
115 e-: 1                                          << 114 gamma    : 0
116 proton: 2                                      << 115 e-       : 1    
117 hydrogen: 3                                    << 116 proton   : 2
118 alpha: 4                                       << 117 hydrogen : 3
119 alpha+: 5                                      << 118 alpha    : 4
120 helium: 6                                      << 119 alpha+   : 5
121                                                << 120 helium   : 6
122 -processes                                     << 121 
123                                                << 122 -processes:
124 Capture: 1                                     << 123 
125 (only if one uses G4EmmicrodosimetryActivator  << 124 eCapture        1
126                                                << 125 (only if one uses G4EmDNAPhysicsActivator in PhysicsList)
127 e-_G4DNAElectronSolvation: 10                  << 126 
128 e-_G4DNAElastic: 11                            << 127 e-_G4DNAElectronSolvation     10
129 e-_G4DNAExcitation: 12                         << 128 e-_G4DNAElastic       11
130 e-_G4DNAIonisation: 13                         << 129 e-_G4DNAExcitation      12
131 e-_G4DNAAttachment: 14                         << 130 e-_G4DNAIonisation      13
132 e-_G4DNAVibExcitation: 15                      << 131 e-_G4DNAAttachment      14
133 msc: 110                                       << 132 e-_G4DNAVibExcitation     15
134 CoulombScat: 120                               << 133 msc         110
135 eIoni: 130                                     << 134 CoulombScat       120
136                                                << 135 eIoni                             130
137 proton_G4DNAElastic: 21                        << 136 
138 proton_G4DNAExcitation: 22                     << 137 proton_G4DNAElastic     21
139 proton_G4DNAIonisation: 23                     << 138 proton_G4DNAExcitation      22
140 proton_G4DNAChargeDecrease: 24                 << 139 proton_G4DNAIonisation      23
141 msc: 210                                       << 140 proton_G4DNAChargeDecrease    24
142 CoulombScat: 220                               << 141 msc         210
143 hIoni: 230                                     << 142 CoulombScat       220
144 nuclearStopping: 240                           << 143 hIoni         230
145                                                << 144 nuclearStopping       240
146 hydrogen_G4DNAElastic: 31                      << 145 
147 hydrogen_G4DNAExcitation: 32                   << 146 hydrogen_G4DNAElastic     31
148 hydrogen_G4DNAIonisation: 33                   << 147 hydrogen_G4DNAExcitation    32
149 hydrogen_G4DNAChargeIncrease: 35               << 148 hydrogen_G4DNAIonisation    33
150                                                << 149 hydrogen_G4DNAChargeIncrease    35
151 alpha_G4DNAElastic: 41                         << 150 
152 alpha_G4DNAExcitation: 42                      << 151 alpha_G4DNAElastic      41
153 alpha_G4DNAIonisation: 43                      << 152 alpha_G4DNAExcitation     42
154 alpha_G4DNAChargeDecrease: 44                  << 153 alpha_G4DNAIonisation     43
155 msc: 410                                       << 154 alpha_G4DNAChargeDecrease   44
156 CoulombScat: 420                               << 155 msc         410
157 ionIoni: 430                                   << 156 CoulombScat       420
158 nuclearStopping: 440                           << 157 ionIoni         430
159                                                << 158 nuclearStopping       440
160 alpha+_G4DNAElastic: 51                        << 159 
161 alpha+_G4DNAExcitation: 52                     << 160 alpha+_G4DNAElastic     51
162 alpha+_G4DNAIonisation: 53                     << 161 alpha+_G4DNAExcitation      52
163 alpha+_G4DNAChargeDecrease: 54                 << 162 alpha+_G4DNAIonisation      53
164 alpha+_G4DNAChargeIncrease: 55                 << 163 alpha+_G4DNAChargeDecrease    54
165 msc: 510                                       << 164 alpha+_G4DNAChargeIncrease    55
166 CoulombScat: 520                               << 165 msc         510
167 hIoni: 530                                     << 166 CoulombScat       520
168 nuclearStopping: 540                           << 167 hIoni         530
169                                                << 168 nuclearStopping       540
170 helium_G4DNAElastic: 61                        << 169 
171 helium_G4DNAExcitation: 62                     << 170 helium_G4DNAElastic     61
172 helium_G4DNAIonisation: 63                     << 171 helium_G4DNAExcitation      62
173 helium_G4DNAChargeIncrease: 65                 << 172 helium_G4DNAIonisation      63
174                                                << 173 helium_G4DNAChargeIncrease    65
175 GenericIon_G4DNAIonisation: 73                 << 174 
176 msc: 710                                       << 175 GenericIon_G4DNAIonisation    73
177 CoulombSca: 720                                << 176 msc         710
178 ionIoni: 730                                   << 177 CoulombScat       720
179 nuclearStopping: 740                           << 178 ionIoni         730
180                                                << 179 nuclearStopping       740
181 phot: 81                                       << 
182 compt: 82                                      << 
183 conv: 83                                       << 
184 Rayl: 84                                       << 
185                                                   180 
186 ----------------------------------------------    181 ---------------------------------------------------------------------------
187                                                   182 
188 Should you have any enquiry, please do not hes << 183 Should you have any enquiry, please do not hesitate to contact: 
189 incerti@lp2ib.in2p3.fr or tran@lp2ib.in2p3.fr  << 184 incerti@cenbg.in2p3.fr