Geant4 Cross Reference |
>> 1 ------------------------------------------------------------------- >> 2 $Id: README 73136 2013-08-19 14:28:09Z sincerti $ >> 3 ------------------------------------------------------------------- >> 4 1 ========================================= 5 ========================================================= 2 Geant4 - microdosimetry example << 6 Geant4 - Microdosimetry example 3 ========================================= 7 ========================================================= 4 8 5 README file 9 README file 6 -------------------- 10 ---------------------- 7 11 8 CORRESPONDING AUTHO << 12 CORRESPONDING AUTHOR 9 << 10 S. Incerti (a, *), H. Tran (a, *), V. Ivantche << 11 a. LP2i, IN2P3 / CNRS / Bordeaux University, 3 << 12 b. G4AI Ltd., UK << 13 * e-mail: incerti@lp2ib.in2p3.fr or tran@lp2ib << 14 13 15 ---->0. INTRODUCTION << 14 S. Incerti (a, *), V. Ivanchenko (b), M. Karamitros (a) >> 15 a. Centre d'Etudes Nucleaires de Bordeaux-Gradignan >> 16 (CENBG), IN2P3 / CNRS / Bordeaux 1 University, 33175 Gradignan, France >> 17 b. G4AI Ltd, UK >> 18 * e-mail:incerti@cenbg.in2p3.fr >> 19 >> 20 ---->0. INTRODUCTION. >> 21 >> 22 The microdosimetry example simulates the track of two 5 MeV protons in liquid water. >> 23 Geant4 standard EM models are used in the World volume while Geant4-DNA models >> 24 are used in a Target volume, declared as a Region. 16 25 17 The microdosimetry example shows how to use Ge << 26 This example is provided by the Geant4-DNA collaboration. 18 in different regions of the geometry. << 19 27 20 The Geant4-DNA processes and models are furthe << 28 These processes and models are further described at: 21 http://geant4-dna.org 29 http://geant4-dna.org 22 30 23 Any report or published results obtained using << 31 Any report or published results obtained using the Geant4-DNA software shall 24 cite the following Geant4-DNA collaboration pu 32 cite the following Geant4-DNA collaboration publications: 25 Med. Phys. 51 (2024) 5873–5889 << 26 Med. Phys. 45 (2018) e722-e739 << 27 Phys. Med. 31 (2015) 861-874 33 Phys. Med. 31 (2015) 861-874 28 Med. Phys. 37 (2010) 4692-4708 34 Med. Phys. 37 (2010) 4692-4708 29 Int. J. Model. Simul. Sci. Comput. 1 (2010) 15 << 30 << 31 ---->1. GEOMETRY SET-UP << 32 35 33 The geometry is a 10-micron side cube (World) << 36 We also suggest these other references related to this example: 34 material) containing a 2 micron-thick slice (a << 37 Nucl. Instrum. and Meth. B 273 (2012) 95-97 >> 38 Prog. Nucl. Sci. Tec. 2 (2011) 898-903 35 39 36 Particles are shot from the World volume. << 40 ---->1. GEOMETRY SET-UP. >> 41 >> 42 The geometry is a 1 mm side cube (World) made of liquid water containing a smaller cubic Target volume of liquid >> 43 water, which dimensions are twenty times smaller than the dimensions of the World volume. 37 44 38 The variable density feature of materials is i << 45 --->2. SET-UP 39 The material can be changed directly in microd << 46 >> 47 Make sure G4LEDATA points to the low energy electromagnetic libraries. 40 48 41 ---->2. SET-UP << 49 The code can be compiled with cmake. 42 50 43 Make sure $G4LEDATA points to the low energy e << 51 It works in MT mode. 44 52 45 ---->3. HOW TO RUN THE EXAMPLE << 53 ---->3. HOW TO RUN THE EXAMPLE 46 54 47 In interactive mode, run: << 55 Normal mode, run: 48 56 49 ./microdosimetry << 57 ./microdosimetry -mt 2 -out microdosimetry 50 << 51 In batch, the macro microdosimetry.in can be u << 52 particle types. << 53 << 54 ---->4. PHYSICS << 55 58 56 The PhysicsList uses Geant4 Physics in the Wor << 59 (or more generally 57 in the Target region. << 60 ./microdosimetry -mt 2 -out myRootFile >> 61 ) 58 62 59 1) Geant4 Physics in the World is selected via << 63 The macro microdosimetry.in is executed by default to select another one: 60 64 61 /dna/test/addPhysics X << 65 ./microdosimetry -mac myMacro.mac 62 66 63 where X is any EM physics list, such as emstan << 67 To get visualization and interactivity: 64 68 65 2) Geant4-DNA activator is used in the regionT << 69 ./microdosimetry -gui >> 70 ( OGL used by default) 66 71 67 /process/em/AddDNARegion regionTarget DNA_OptY << 72 or you may use your own visualization driver, for instance: >> 73 ./microdosimetry -vis "DAWNFILE" 68 74 69 where Y = 0, 2, 4, or 6. << 75 ---->4. PHYSICS 70 << 71 3) In addition to 1) or 2), to enable radioact << 72 << 73 /dna/test/addPhysics raddecay << 74 76 75 4) Warning regarding ions: when the incident p << 77 This example shows: 76 (/gun/particle ion), specified with Z and A nu << 78 - how to use the Geant4-DNA processes, 77 the Rudd ionisation extended model is used. Th << 79 - how to count and save occurrences of processes 78 by default down to 0.5 MeV/u. This tracking cu << 80 - how to combine them with Standard EM Physics. 79 81 80 /dna/test/addIonsTrackingCut false << 82 A simple electron capture process is also provided in order to kill electrons >> 83 below a chosen energy threshold, set in the Physics list. 81 84 >> 85 Look at the PhyscisList.cc file. 82 86 83 ---->5. SIMULATION OUTPUT AND RESULT ANALYSIS << 87 ---->5. SIMULATION OUTPUT AND RESULT ANALYSIS 84 88 85 The output results consists in a dna.root file << 89 The output results consists in a microdosimetry.root file, containing for each simulation step: 86 - the type of particle for the current step 90 - the type of particle for the current step 87 - the type of process for the current step 91 - the type of process for the current step 88 - the step PostStepPoint coordinates (in nm) << 92 - the track position of the current step (in nanometers) 89 - the energy deposit along the current step (i 93 - the energy deposit along the current step (in eV) 90 - the step length (in nm) 94 - the step length (in nm) 91 - the total energy loss along the current step << 95 - the total enery loss along the current step (in eV) 92 - the kinetic energy at PreStepPoint (in eV) << 93 - the cos of the scattering angle << 94 - the event ID << 95 - the track ID << 96 - the parent track ID << 97 - the step number << 98 96 99 This information is extracted from the Steppin << 97 This file can be easily analyzed using for example the provided ROOT macro 100 << 101 The ROOT file can be easily analyzed using for << 102 file plot.C; to do so : 98 file plot.C; to do so : 103 * be sure to have ROOT installed on your machi 99 * be sure to have ROOT installed on your machine 104 * be sure to be in the directory containing th << 100 * be sure to be in the microdosimetry directory 105 * copy plot.C into this directory << 101 * launch ROOT by typing root 106 * from there, launch ROOT by typing root << 107 * under your ROOT session, type in : .X plot.C 102 * under your ROOT session, type in : .X plot.C to execute the macro file 108 * alternatively you can type directly under yo 103 * alternatively you can type directly under your session : root plot.C 109 104 110 The naming scheme on the displayed ROOT plots 105 The naming scheme on the displayed ROOT plots is as follows (see SteppingAction.cc): 111 106 112 -particles << 107 -particles: >> 108 e- : 1 >> 109 proton : 2 >> 110 hydrogen : 3 >> 111 alpha : 4 >> 112 alpha+ : 5 >> 113 helium : 6 >> 114 >> 115 -processes: >> 116 msc 10 >> 117 e-_G4DNAElastic 11 >> 118 e-_G4DNAExcitation 12 >> 119 e-_G4DNAIonisation 13 >> 120 e-_G4DNAAttachment 14 >> 121 e-_G4DNAVibExcitation 15 >> 122 eCapture 16 >> 123 >> 124 proton_G4DNAExcitation 17 >> 125 proton_G4DNAIonisation 18 >> 126 proton_G4DNAChargeDecrease 19 >> 127 >> 128 hydrogen_G4DNAExcitation 20 >> 129 hydrogen_G4DNAIonisation 21 >> 130 hydrogen_G4DNAChargeIncrease 22 >> 131 >> 132 alpha_G4DNAExcitation 23 >> 133 alpha_G4DNAIonisation 24 >> 134 alpha_G4DNAChargeDecrease 25 >> 135 >> 136 alpha+_G4DNAExcitation 26 >> 137 alpha+_G4DNAIonisation 27 >> 138 alpha+_G4DNAChargeDecrease 28 >> 139 alpha+_G4DNAChargeIncrease 29 >> 140 >> 141 helium_G4DNAExcitation 30 >> 142 helium_G4DNAIonisation 31 >> 143 helium_G4DNAChargeIncrease 32 >> 144 >> 145 hIoni 33 >> 146 eIoni 34 113 147 114 gamma: 0 << 115 e-: 1 << 116 proton: 2 << 117 hydrogen: 3 << 118 alpha: 4 << 119 alpha+: 5 << 120 helium: 6 << 121 << 122 -processes << 123 << 124 Capture: 1 << 125 (only if one uses G4EmmicrodosimetryActivator << 126 << 127 e-_G4DNAElectronSolvation: 10 << 128 e-_G4DNAElastic: 11 << 129 e-_G4DNAExcitation: 12 << 130 e-_G4DNAIonisation: 13 << 131 e-_G4DNAAttachment: 14 << 132 e-_G4DNAVibExcitation: 15 << 133 msc: 110 << 134 CoulombScat: 120 << 135 eIoni: 130 << 136 << 137 proton_G4DNAElastic: 21 << 138 proton_G4DNAExcitation: 22 << 139 proton_G4DNAIonisation: 23 << 140 proton_G4DNAChargeDecrease: 24 << 141 msc: 210 << 142 CoulombScat: 220 << 143 hIoni: 230 << 144 nuclearStopping: 240 << 145 << 146 hydrogen_G4DNAElastic: 31 << 147 hydrogen_G4DNAExcitation: 32 << 148 hydrogen_G4DNAIonisation: 33 << 149 hydrogen_G4DNAChargeIncrease: 35 << 150 << 151 alpha_G4DNAElastic: 41 << 152 alpha_G4DNAExcitation: 42 << 153 alpha_G4DNAIonisation: 43 << 154 alpha_G4DNAChargeDecrease: 44 << 155 msc: 410 << 156 CoulombScat: 420 << 157 ionIoni: 430 << 158 nuclearStopping: 440 << 159 << 160 alpha+_G4DNAElastic: 51 << 161 alpha+_G4DNAExcitation: 52 << 162 alpha+_G4DNAIonisation: 53 << 163 alpha+_G4DNAChargeDecrease: 54 << 164 alpha+_G4DNAChargeIncrease: 55 << 165 msc: 510 << 166 CoulombScat: 520 << 167 hIoni: 530 << 168 nuclearStopping: 540 << 169 << 170 helium_G4DNAElastic: 61 << 171 helium_G4DNAExcitation: 62 << 172 helium_G4DNAIonisation: 63 << 173 helium_G4DNAChargeIncrease: 65 << 174 << 175 GenericIon_G4DNAIonisation: 73 << 176 msc: 710 << 177 CoulombSca: 720 << 178 ionIoni: 730 << 179 nuclearStopping: 740 << 180 << 181 phot: 81 << 182 compt: 82 << 183 conv: 83 << 184 Rayl: 84 << 185 148 186 ---------------------------------------------- 149 --------------------------------------------------------------------------- 187 150 188 Should you have any enquiry, please do not hes << 151 Should you have any enquiry, please do not hesitate to contact: 189 incerti@lp2ib.in2p3.fr or tran@lp2ib.in2p3.fr << 152 incerti@cenbg.in2p3.fr