Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // << 27 /// \file medical/DICOM/src/DicomHandler.cc << 28 /// \brief Implementation of the DicomHandler << 29 // << 30 // The code was written by : 26 // The code was written by : 31 // *Louis Archambault louis.archambault@p << 27 // *Louis Archambault louis.archambault@phy.ulaval.ca, 32 // *Luc Beaulieu beaulieu@phy.ulaval.ca 28 // *Luc Beaulieu beaulieu@phy.ulaval.ca 33 // +Vincent Hubert-Tremblay at tigre.2@sy 29 // +Vincent Hubert-Tremblay at tigre.2@sympatico.ca 34 // 30 // 35 // 31 // 36 // *Centre Hospitalier Universitaire de Quebec 32 // *Centre Hospitalier Universitaire de Quebec (CHUQ), 37 // Hotel-Dieu de Quebec, departement de Radio- 33 // Hotel-Dieu de Quebec, departement de Radio-oncologie 38 // 11 cote du palais. Quebec, QC, Canada, G1R 34 // 11 cote du palais. Quebec, QC, Canada, G1R 2J6 39 // tel (418) 525-4444 #6720 35 // tel (418) 525-4444 #6720 40 // fax (418) 691 5268 36 // fax (418) 691 5268 41 // 37 // 42 // + University Laval, Quebec (QC) Canada << 38 // + Universit.AŽé Laval, QuŽébec (QC) Canada 43 //******************************************** 39 //******************************************************* 44 // 40 // 45 //******************************************** 41 //******************************************************* 46 // 42 // 47 /// DicomHandler.cc : << 43 //******************************************************* 48 /// - Handling of DICM images << 44 // 49 /// - Reading headers and pixels << 45 // DicomHandler.cc : 50 /// - Transforming pixel to density and << 46 // - Handling of DICM images 51 /// files << 47 // - Reading headers and pixels >> 48 // - Transforming pixel to density and creating *.g4dcm >> 49 // files >> 50 // - Definitions are in DicomHandler.hh 52 //******************************************** 51 //******************************************************* 53 52 54 #include "DicomHandler.hh" 53 #include "DicomHandler.hh" 55 << 56 #include "DicomPhantomZSliceHeader.hh" << 57 #include "DicomPhantomZSliceMerged.hh" << 58 << 59 #include "G4ios.hh" << 60 #include "globals.hh" 54 #include "globals.hh" >> 55 #include "G4ios.hh" >> 56 #include <fstream> 61 57 62 #include <cctype> 58 #include <cctype> 63 #include <cstring> 59 #include <cstring> 64 #include <fstream> << 65 << 66 //....oooOO0OOooo........oooOO0OOooo........oo << 67 << 68 DicomHandler* DicomHandler::fInstance = 0; << 69 60 70 //....oooOO0OOooo........oooOO0OOooo........oo << 71 61 72 DicomHandler* DicomHandler::Instance() << 73 { << 74 if (fInstance == 0) { << 75 static DicomHandler dicomhandler; << 76 fInstance = &dicomhandler; << 77 } << 78 return fInstance; << 79 } << 80 << 81 //....oooOO0OOooo........oooOO0OOooo........oo << 82 << 83 G4String DicomHandler::GetDicomDataPath() << 84 { << 85 // default is current directory << 86 G4String driverPath = "."; << 87 // check environment << 88 const char* path = std::getenv("DICOM_PATH") << 89 << 90 if (path) { << 91 // if is set in environment << 92 return G4String(path); << 93 } << 94 else { << 95 // if DICOM_USE_HEAD, look for data instal << 96 #ifdef DICOM_USE_HEAD << 97 G4cerr << "Warning! DICOM was compiled wit << 98 << "the DICOM_PATH was not set!" << << 99 G4String datadir = G4GetEnv<G4String>("G4E << 100 if (datadir.length() > 0) { << 101 auto _last = datadir.rfind("/"); << 102 if (_last != std::string::npos) datadir. << 103 driverPath = datadir + "/DICOM1.1/DICOM_ << 104 G4int rc = setenv("DICOM_PATH", driverPa << 105 G4cerr << "\t --> Using '" << driverPath << 106 G4ConsumeParameters(rc); << 107 } << 108 #endif << 109 } << 110 return driverPath; << 111 } << 112 << 113 //....oooOO0OOooo........oooOO0OOooo........oo << 114 << 115 G4String DicomHandler::GetDicomDataFile() << 116 { << 117 #if defined(DICOM_USE_HEAD) && defined(G4_DCMT << 118 return GetDicomDataPath() + "/Data.dat.new"; << 119 #else << 120 return GetDicomDataPath() + "/Data.dat"; << 121 #endif << 122 } << 123 << 124 //....oooOO0OOooo........oooOO0OOooo........oo << 125 << 126 #ifdef DICOM_USE_HEAD << 127 DicomHandler::DicomHandler() << 128 : DATABUFFSIZE(8192), << 129 LINEBUFFSIZE(5020), << 130 FILENAMESIZE(512), << 131 fCompression(0), << 132 fNFiles(0), << 133 fRows(0), << 134 fColumns(0), << 135 fBitAllocated(0), << 136 fMaxPixelValue(0), << 137 fMinPixelValue(0), << 138 fPixelSpacingX(0.), << 139 fPixelSpacingY(0.), << 140 fSliceThickness(0.), << 141 fSliceLocation(0.), << 142 fRescaleIntercept(0), << 143 fRescaleSlope(0), << 144 fLittleEndian(true), << 145 fImplicitEndian(false), << 146 fPixelRepresentation(0), << 147 fNbrequali(0), << 148 fValueDensity(NULL), << 149 fValueCT(NULL), << 150 fReadCalibration(false), << 151 fMergedSlices(NULL), << 152 fCt2DensityFile("null.dat") << 153 { << 154 fMergedSlices = new DicomPhantomZSliceMerged << 155 fDriverFile = GetDicomDataFile(); << 156 G4cout << "Reading the DICOM_HEAD project " << 157 } << 158 #else << 159 DicomHandler::DicomHandler() 62 DicomHandler::DicomHandler() 160 : DATABUFFSIZE(8192), << 63 : DATABUFFSIZE(8192), LINEBUFFSIZE(128), FILENAMESIZE(512), 161 LINEBUFFSIZE(5020), << 64 compression(0), nFiles(0), rows(0), columns(0), 162 FILENAMESIZE(512), << 65 bitAllocated(0), maxPixelValue(0), minPixelValue(0), 163 fCompression(0), << 66 pixelSpacingX(0.), pixelSpacingY(0.), 164 fNFiles(0), << 67 sliceThickness(0.), sliceLocation(0.), 165 fRows(0), << 68 rescaleIntercept(0), rescaleSlope(0), 166 fColumns(0), << 69 littleEndian(true), implicitEndian(false), 167 fBitAllocated(0), << 70 pixelRepresentation(0) { 168 fMaxPixelValue(0), << 71 ; 169 fMinPixelValue(0), << 170 fPixelSpacingX(0.), << 171 fPixelSpacingY(0.), << 172 fSliceThickness(0.), << 173 fSliceLocation(0.), << 174 fRescaleIntercept(0), << 175 fRescaleSlope(0), << 176 fLittleEndian(true), << 177 fImplicitEndian(false), << 178 fPixelRepresentation(0), << 179 fNbrequali(0), << 180 fValueDensity(NULL), << 181 fValueCT(NULL), << 182 fReadCalibration(false), << 183 fMergedSlices(NULL), << 184 fDriverFile("Data.dat"), << 185 fCt2DensityFile("CT2Density.dat") << 186 { << 187 fMergedSlices = new DicomPhantomZSliceMerged << 188 } 72 } 189 #endif << 190 //....oooOO0OOooo........oooOO0OOooo........oo << 191 << 192 DicomHandler::~DicomHandler() {} << 193 73 194 //....oooOO0OOooo........oooOO0OOooo........oo << 74 DicomHandler::~DicomHandler() { >> 75 ; >> 76 } 195 77 196 G4int DicomHandler::ReadFile(FILE* dicom, char << 78 G4int DicomHandler::ReadFile(FILE *dicom, char * filename2) 197 { 79 { 198 G4cout << " ReadFile " << filename2 << G4end 80 G4cout << " ReadFile " << filename2 << G4endl; >> 81 G4int returnvalue = 0; >> 82 char * buffer = new char[LINEBUFFSIZE]; 199 83 200 G4int returnvalue = 0; << 84 implicitEndian = false; 201 size_t rflag = 0; << 85 littleEndian = true; 202 char* buffer = new char[LINEBUFFSIZE]; << 203 << 204 fImplicitEndian = false; << 205 fLittleEndian = true; << 206 << 207 rflag = std::fread(buffer, 1, 128, dicom); << 208 << 209 << 210 rflag = std::fread(buffer, 1, 4, dicom); << 211 // if there is no preamble, the FILE pointer << 212 if (std::strncmp("DICM", buffer, 4) != 0) { << 213 std::fseek(dicom, 0, SEEK_SET); << 214 fImplicitEndian = true; << 215 } << 216 << 217 short readGroupId; // identify the kind of << 218 short readElementId; // identify a particul << 219 short elementLength2; // deal with element << 220 // unsigned int eleme << 221 // deal with element length in 4 bytes << 222 unsigned long elementLength4; // deal with << 223 << 224 char* data = new char[DATABUFFSIZE]; << 225 << 226 // Read information up to the pixel data << 227 while (true) { << 228 // Reading groups and elements : << 229 readGroupId = 0; << 230 readElementId = 0; << 231 // group ID << 232 rflag = std::fread(buffer, 2, 1, dicom); << 233 GetValue(buffer, readGroupId); << 234 // element ID << 235 rflag = std::fread(buffer, 2, 1, dicom); << 236 GetValue(buffer, readElementId); << 237 << 238 // Creating a tag to be identified afterwa << 239 G4int tagDictionary = readGroupId * 0x1000 << 240 << 241 // beginning of the pixels << 242 if (tagDictionary == 0x7FE00010) { << 243 // Following 2 fread's are modifications << 244 // (Jonathan Madsen) << 245 if (!fImplicitEndian) rflag = std::fread << 246 // (not used for pixels) << 247 rflag = std::fread(buffer, 4, 1, dicom); << 248 // (not used for pixels) << 249 break; // Exit to ReadImageData() << 250 } << 251 << 252 // VR or element length << 253 rflag = std::fread(buffer, 2, 1, dicom); << 254 GetValue(buffer, elementLength2); << 255 << 256 // If value representation (VR) is OB, OW, << 257 // the next length is 32 bits << 258 if ((elementLength2 == 0x424f || // "OB" << 259 elementLength2 == 0x574f || // "OW" << 260 elementLength2 == 0x464f || // "OF" << 261 elementLength2 == 0x5455 || // "UT" << 262 elementLength2 == 0x5153 || // "SQ" << 263 elementLength2 == 0x4e55) << 264 && // "UN" << 265 !fImplicitEndian) << 266 { // explicit VR << 267 << 268 rflag = std::fread(buffer, 2, 1, dicom); << 269 << 270 // element length << 271 rflag = std::fread(buffer, 4, 1, dicom); << 272 GetValue(buffer, elementLength4); << 273 << 274 if (elementLength2 == 0x5153) { << 275 if (elementLength4 == 0xFFFFFFFF) { << 276 read_undefined_nested(dicom); << 277 elementLength4 = 0; << 278 } << 279 else { << 280 if (read_defined_nested(dicom, eleme << 281 G4Exception("DicomHandler::ReadFil << 282 "Function read_defined << 283 } << 284 } << 285 } << 286 else { << 287 // Reading the information with data << 288 rflag = std::fread(data, elementLength << 289 } << 290 } << 291 else { << 292 // explicit with VR different than prev << 293 if (!fImplicitEndian || readGroupId == 2 << 294 // G4cout << "Reading DICOM files wit << 295 // element length (2 bytes) << 296 rflag = std::fread(buffer, 2, 1, dicom << 297 GetValue(buffer, elementLength2); << 298 elementLength4 = elementLength2; << 299 << 300 rflag = std::fread(data, elementLength << 301 } << 302 else { // Implicit VR << 303 << 304 // G4cout << "Reading DICOM files wit << 305 << 306 // element length (4 bytes) << 307 if (std::fseek(dicom, -2, SEEK_CUR) != << 308 G4Exception("DicomHandler::ReadFile" << 309 } << 310 << 311 rflag = std::fread(buffer, 4, 1, dicom << 312 GetValue(buffer, elementLength4); << 313 << 314 // G4cout << std::hex<< elementLength << 315 << 316 if (elementLength4 == 0xFFFFFFFF) { << 317 read_undefined_nested(dicom); << 318 elementLength4 = 0; << 319 } << 320 else { << 321 rflag = std::fread(data, elementLeng << 322 } << 323 } << 324 } << 325 << 326 // NULL termination << 327 data[elementLength4] = '\0'; << 328 << 329 // analyzing information << 330 GetInformation(tagDictionary, data); << 331 } << 332 << 333 G4String fnameG4DCM = G4String(filename2) + << 334 << 335 // Perform functions originally written stra << 336 DicomPhantomZSliceHeader* zslice = new Dicom << 337 for (auto ite = fMaterialIndices.cbegin(); i << 338 zslice->AddMaterial(ite->second); << 339 } << 340 << 341 zslice->SetNoVoxelsX(fColumns / fCompression << 342 zslice->SetNoVoxelsY(fRows / fCompression); << 343 zslice->SetNoVoxelsZ(1); << 344 << 345 zslice->SetMinX(-fPixelSpacingX * fColumns / << 346 zslice->SetMaxX(fPixelSpacingX * fColumns / << 347 86 348 zslice->SetMinY(-fPixelSpacingY * fRows / 2. << 87 std::fread( buffer, 1, 128, dicom ); // The first 128 bytes 349 zslice->SetMaxY(fPixelSpacingY * fRows / 2.) << 88 //are not important >> 89 // Reads the "DICOM" letters >> 90 std::fread( buffer, 1, 4, dicom ); >> 91 // if there is no preamble, the FILE pointer is rewinded. >> 92 if(std::strncmp("DICM", buffer, 4) != 0) { >> 93 std::fseek(dicom, 0, SEEK_SET); >> 94 implicitEndian = true; >> 95 } >> 96 >> 97 short readGroupId; // identify the kind of input data >> 98 short readElementId; // identify a particular type information >> 99 short elementLength2; // deal with element length in 2 bytes >> 100 G4int elementLength4; // deal with element length in 4 bytes >> 101 >> 102 char * data = new char[DATABUFFSIZE]; >> 103 >> 104 // Read information up to the pixel data >> 105 while(true) { >> 106 >> 107 //Reading groups and elements : >> 108 readGroupId = 0; >> 109 readElementId = 0; >> 110 // group ID >> 111 std::fread(buffer, 2, 1, dicom); >> 112 GetValue(buffer, readGroupId); >> 113 // element ID >> 114 std::fread(buffer, 2, 1, dicom); >> 115 GetValue(buffer, readElementId); >> 116 >> 117 // Creating a tag to be identified afterward >> 118 G4int tagDictionary = readGroupId*0x10000 + readElementId; >> 119 >> 120 >> 121 // VR or element length >> 122 std::fread(buffer,2,1,dicom); >> 123 GetValue(buffer, elementLength2); >> 124 >> 125 // If value representation (VR) is OB, OW, SQ, UN, >> 126 //the next length is 32 bits >> 127 if((elementLength2 == 0x424f || // "OB" >> 128 elementLength2 == 0x574f || // "OW" >> 129 elementLength2 == 0x5153 || // "SQ" >> 130 elementLength2 == 0x4e55) && // "UN" >> 131 !implicitEndian ) { // explicit VR >> 132 >> 133 std::fread(buffer, 2, 1, dicom); // Skip 2 reserved bytes >> 134 >> 135 // element length >> 136 std::fread(buffer, 4, 1, dicom); >> 137 GetValue(buffer, elementLength4); >> 138 >> 139 // beginning of the pixels >> 140 if(tagDictionary == 0x7FE00010) break; >> 141 >> 142 // Reading the information with data >> 143 std::fread(data, elementLength4,1,dicom); >> 144 >> 145 >> 146 } else { // length is 16 bits : >> 147 >> 148 if(!implicitEndian || readGroupId == 2) { >> 149 // element length (2 bytes) >> 150 std::fread(buffer, 2, 1, dicom); >> 151 GetValue(buffer, elementLength2); >> 152 elementLength4 = elementLength2; >> 153 >> 154 } else { >> 155 // element length (4 bytes) >> 156 if(std::fseek(dicom, -2, SEEK_CUR) != 0) { >> 157 G4cerr << "[DicomHandler] fseek failed" << G4endl; >> 158 exit(-10); >> 159 } >> 160 std::fread(buffer, 4, 1, dicom); >> 161 GetValue(buffer, elementLength4); >> 162 } >> 163 >> 164 // beginning of the pixels >> 165 if(tagDictionary == 0x7FE00010) break; >> 166 >> 167 std::fread(data, elementLength4, 1, dicom); >> 168 } >> 169 >> 170 // NULL termination >> 171 data[elementLength4] = '\0'; >> 172 >> 173 // analyzing information >> 174 GetInformation(tagDictionary, data); >> 175 } >> 176 >> 177 // Creating files to store information >> 178 std::ofstream foutG4DCM; >> 179 G4String fnameG4DCM = G4String(filename2) + ".g4dcm"; >> 180 foutG4DCM.open(fnameG4DCM); >> 181 G4cout << " opened fnameG4DCM file " << fnameG4DCM << G4endl; >> 182 >> 183 foutG4DCM << fMaterialIndices.size() << G4endl; >> 184 //--- Write materials >> 185 size_t ii = 0; >> 186 std::map<G4double,G4String>::const_iterator ite; >> 187 for( ite = fMaterialIndices.begin(); ite != fMaterialIndices.end(); ite++, ii++ ){ >> 188 foutG4DCM << ii << " " << (*ite).second << G4endl; >> 189 } >> 190 //--- Write number of voxels (assume only one voxel in Z) >> 191 foutG4DCM << rows/compression << " " << columns/compression << " 1 " << G4endl; >> 192 //--- Write minimum and maximum extensions >> 193 foutG4DCM << -pixelSpacingX*rows/2 << " " << pixelSpacingX*rows/2 << G4endl; >> 194 foutG4DCM << -pixelSpacingY*columns/2 << " " << pixelSpacingY*columns/2 << G4endl; >> 195 foutG4DCM << sliceLocation-sliceThickness/2. << " " << sliceLocation+sliceThickness/2. << G4endl; >> 196 >> 197 ReadData( dicom, filename2 ); >> 198 >> 199 StoreData( foutG4DCM ); >> 200 >> 201 foutG4DCM.close(); >> 202 >> 203 // >> 204 delete [] buffer; >> 205 delete [] data; 350 206 351 zslice->SetMinZ(fSliceLocation - fSliceThick << 207 return returnvalue; 352 zslice->SetMaxZ(fSliceLocation + fSliceThick << 353 << 354 //=== << 355 << 356 ReadData(dicom, filename2); << 357 << 358 // DEPRECIATED << 359 // StoreData( foutG4DCM ); << 360 // foutG4DCM.close(); << 361 << 362 StoreData(zslice); << 363 << 364 // Dumped 2 file after DicomPhantomZSliceMer << 365 // zslice->DumpToFile(); << 366 << 367 fMergedSlices->AddZSlice(zslice); << 368 << 369 // << 370 delete[] buffer; << 371 delete[] data; << 372 << 373 if (rflag) return returnvalue; << 374 return returnvalue; << 375 } 208 } 376 209 377 //....oooOO0OOooo........oooOO0OOooo........oo << 210 // 378 << 211 void DicomHandler::GetInformation(G4int & tagDictionary, char * data) { 379 void DicomHandler::GetInformation(G4int& tagDi << 212 if(tagDictionary == 0x00280010 ) { // Number of Rows 380 { << 213 GetValue(data, rows); 381 if (tagDictionary == 0x00280010) { // Numbe << 214 std::printf("[0x00280010] Rows -> %i\n",rows); 382 GetValue(data, fRows); << 215 383 std::printf("[0x00280010] Rows -> %i\n", f << 216 } else if(tagDictionary == 0x00280011 ) { // Number of columns 384 } << 217 GetValue(data, columns); 385 else if (tagDictionary == 0x00280011) { // << 218 std::printf("[0x00280011] Columns -> %i\n",columns); 386 GetValue(data, fColumns); << 219 387 std::printf("[0x00280011] Columns -> %i\n" << 220 } else if(tagDictionary == 0x00280102 ) { // High bits ( not used ) 388 } << 221 short highBits; 389 else if (tagDictionary == 0x00280102) { // << 222 GetValue(data, highBits); 390 short highBits; << 223 std::printf("[0x00280102] High bits -> %i\n",highBits); 391 GetValue(data, highBits); << 224 392 std::printf("[0x00280102] High bits -> %i\ << 225 } else if(tagDictionary == 0x00280100 ) { // Bits allocated 393 } << 226 GetValue(data, bitAllocated); 394 else if (tagDictionary == 0x00280100) { // << 227 std::printf("[0x00280100] Bits allocated -> %i\n", bitAllocated); 395 GetValue(data, fBitAllocated); << 228 396 std::printf("[0x00280100] Bits allocated - << 229 } else if(tagDictionary == 0x00280101 ) { // Bits stored ( not used ) 397 } << 230 short bitStored; 398 else if (tagDictionary == 0x00280101) { // << 231 GetValue(data, bitStored); 399 short bitStored; << 232 std::printf("[0x00280101] Bits stored -> %i\n",bitStored); 400 GetValue(data, bitStored); << 233 401 std::printf("[0x00280101] Bits stored -> % << 234 } else if(tagDictionary == 0x00280106 ) { // Min. pixel value 402 } << 235 GetValue(data, minPixelValue); 403 else if (tagDictionary == 0x00280106) { // << 236 std::printf("[0x00280106] Min. pixel value -> %i\n", minPixelValue); 404 GetValue(data, fMinPixelValue); << 237 405 std::printf("[0x00280106] Min. pixel value << 238 } else if(tagDictionary == 0x00280107 ) { // Max. pixel value 406 } << 239 GetValue(data, maxPixelValue); 407 else if (tagDictionary == 0x00280107) { // << 240 std::printf("[0x00280107] Max. pixel value -> %i\n", maxPixelValue); 408 GetValue(data, fMaxPixelValue); << 241 409 std::printf("[0x00280107] Max. pixel value << 242 } else if(tagDictionary == 0x00281053) { // Rescale slope 410 } << 243 rescaleSlope = atoi(data); 411 else if (tagDictionary == 0x00281053) { // << 244 std::printf("[0x00281053] Rescale Slope -> %d\n", rescaleSlope); 412 fRescaleSlope = atoi(data); << 245 413 std::printf("[0x00281053] Rescale Slope -> << 246 } else if(tagDictionary == 0x00281052 ) { // Rescalse intercept 414 } << 247 rescaleIntercept = atoi(data); 415 else if (tagDictionary == 0x00281052) { // << 248 std::printf("[0x00281052] Rescale Intercept -> %d\n", rescaleIntercept ); 416 fRescaleIntercept = atoi(data); << 249 417 std::printf("[0x00281052] Rescale Intercep << 250 } else if(tagDictionary == 0x00280103 ) { 418 } << 251 // Pixel representation ( functions not design to read signed bits ) 419 else if (tagDictionary == 0x00280103) { << 252 pixelRepresentation = atoi(data); // 0: unsigned 1: signed 420 // Pixel representation ( functions not d << 253 std::printf("[0x00280103] Pixel Representation -> %i\n", pixelRepresentation); 421 fPixelRepresentation = atoi(data); // 0: << 254 if(pixelRepresentation == 1 ) { 422 std::printf("[0x00280103] Pixel Representa << 255 std::printf("### PIXEL REPRESENTATION = 1, BITS ARE SIGNED, "); 423 if (fPixelRepresentation == 1) { << 256 std::printf("DICOM READING SCAN FOR UNSIGNED VALUE, POSSIBLE "); 424 std::printf("### PIXEL REPRESENTATION = << 257 std::printf("ERROR !!!!!! -> \n"); 425 std::printf("DICOM READING SCAN FOR UNSI << 258 } 426 std::printf("ERROR !!!!!! -> \n"); << 259 >> 260 } else if(tagDictionary == 0x00080006 ) { // Modality >> 261 std::printf("[0x00080006] Modality -> %s\n", data); >> 262 >> 263 } else if(tagDictionary == 0x00080070 ) { // Manufacturer >> 264 std::printf("[0x00080070] Manufacturer -> %s\n", data); >> 265 >> 266 } else if(tagDictionary == 0x00080080 ) { // Institution Name >> 267 std::printf("[0x00080080] Institution Name -> %s\n", data); >> 268 >> 269 } else if(tagDictionary == 0x00080081 ) { // Institution Address >> 270 std::printf("[0x00080081] Institution Address -> %s\n", data); >> 271 >> 272 } else if(tagDictionary == 0x00081040 ) { // Institution Department Name >> 273 std::printf("[0x00081040] Institution Department Name -> %s\n", data); >> 274 >> 275 } else if(tagDictionary == 0x00081090 ) { // Manufacturer's Model Name >> 276 std::printf("[0x00081090] Manufacturer's Model Name -> %s\n", data); >> 277 >> 278 } else if(tagDictionary == 0x00181000 ) { // Device Serial Number >> 279 std::printf("[0x00181000] Device Serial Number -> %s\n", data); >> 280 >> 281 } else if(tagDictionary == 0x00080008 ) { // Image type ( not used ) >> 282 std::printf("[0x00080008] Image Types -> %s\n", data); >> 283 >> 284 } else if(tagDictionary == 0x00283000 ) { // Modality LUT Sequence ( not used ) >> 285 std::printf("[0x00283000] Modality LUT Sequence SQ 1 -> %s\n", data); >> 286 >> 287 } else if(tagDictionary == 0x00283002 ) { // LUT Descriptor ( not used ) >> 288 std::printf("[0x00283002] LUT Descriptor US or SS 3 -> %s\n", data); >> 289 >> 290 } else if(tagDictionary == 0x00283003 ) { // LUT Explanation ( not used ) >> 291 std::printf("[0x00283003] LUT Explanation LO 1 -> %s\n", data); >> 292 >> 293 } else if(tagDictionary == 0x00283004 ) { // Modality LUT ( not used ) >> 294 std::printf("[0x00283004] Modality LUT Type LO 1 -> %s\n", data); >> 295 >> 296 } else if(tagDictionary == 0x00283006 ) { // LUT Data ( not used ) >> 297 std::printf("[0x00283006] LUT Data US or SS -> %s\n", data); >> 298 >> 299 } else if(tagDictionary == 0x00283010 ) { // VOI LUT ( not used ) >> 300 std::printf("[0x00283010] VOI LUT Sequence SQ 1 -> %s\n", data); >> 301 >> 302 } else if(tagDictionary == 0x00280120 ) { // Pixel Padding Value ( not used ) >> 303 std::printf("[0x00280120] Pixel Padding Value US or SS 1 -> %s\n", data); >> 304 >> 305 } else if(tagDictionary == 0x00280030 ) { // Pixel Spacing >> 306 G4String datas(data); >> 307 int iss = datas.find('\\'); >> 308 pixelSpacingX = atof( datas.substr(0,iss).c_str() ); >> 309 pixelSpacingY = atof( datas.substr(iss+2,datas.length()).c_str() ); >> 310 >> 311 } else if(tagDictionary == 0x00200037 ) { // Image Orientation ( not used ) >> 312 std::printf("[0x00200037] Image Orientation (Patient) -> %s\n", data); >> 313 >> 314 } else if(tagDictionary == 0x00200032 ) { // Image Position ( not used ) >> 315 std::printf("[0x00200032] Image Position (Patient,mm) -> %s\n", data); >> 316 >> 317 } else if(tagDictionary == 0x00180050 ) { // Slice Thickness >> 318 sliceThickness = atof(data); >> 319 std::printf("[0x00180050] Slice Thickness (mm) -> %f\n", sliceThickness); >> 320 >> 321 } else if(tagDictionary == 0x00201041 ) { // Slice Location >> 322 sliceLocation = atof(data); >> 323 std::printf("[0x00201041] Slice Location -> %f\n", sliceLocation); >> 324 >> 325 } else if(tagDictionary == 0x00280004 ) { // Photometric Interpretation ( not used ) >> 326 std::printf("[0x00280004] Photometric Interpretation -> %s\n", data); >> 327 >> 328 } else if(tagDictionary == 0x00020010) { // Endian >> 329 if(strcmp(data, "1.2.840.10008.1.2") == 0) >> 330 implicitEndian = true; >> 331 else if(strncmp(data, "1.2.840.10008.1.2.2", 19) == 0) >> 332 littleEndian = false; >> 333 //else 1.2.840..10008.1.2.1 (explicit little endian) >> 334 >> 335 std::printf("[0x00020010] Endian -> %s\n", data); 427 } 336 } 428 } << 429 else if (tagDictionary == 0x00080006) { // << 430 std::printf("[0x00080006] Modality -> %s\n << 431 } << 432 else if (tagDictionary == 0x00080070) { // << 433 std::printf("[0x00080070] Manufacturer -> << 434 } << 435 else if (tagDictionary == 0x00080080) { // << 436 std::printf("[0x00080080] Institution Name << 437 } << 438 else if (tagDictionary == 0x00080081) { // << 439 std::printf("[0x00080081] Institution Addr << 440 } << 441 else if (tagDictionary == 0x00081040) { // << 442 std::printf("[0x00081040] Institution Depa << 443 } << 444 else if (tagDictionary == 0x00081090) { // << 445 std::printf("[0x00081090] Manufacturer's M << 446 } << 447 else if (tagDictionary == 0x00181000) { // << 448 std::printf("[0x00181000] Device Serial Nu << 449 } << 450 else if (tagDictionary == 0x00080008) { // << 451 std::printf("[0x00080008] Image Types -> % << 452 } << 453 else if (tagDictionary == 0x00283000) { // << 454 std::printf("[0x00283000] Modality LUT Seq << 455 } << 456 else if (tagDictionary == 0x00283002) { // << 457 std::printf("[0x00283002] LUT Descriptor U << 458 } << 459 else if (tagDictionary == 0x00283003) { // << 460 std::printf("[0x00283003] LUT Explanation << 461 } << 462 else if (tagDictionary == 0x00283004) { // << 463 std::printf("[0x00283004] Modality LUT Typ << 464 } << 465 else if (tagDictionary == 0x00283006) { // << 466 std::printf("[0x00283006] LUT Data US or S << 467 } << 468 else if (tagDictionary == 0x00283010) { // << 469 std::printf("[0x00283010] VOI LUT Sequence << 470 } << 471 else if (tagDictionary == 0x00280120) { // << 472 std::printf("[0x00280120] Pixel Padding Va << 473 } << 474 else if (tagDictionary == 0x00280030) { // << 475 G4String datas(data); << 476 G4int iss = G4int(datas.find('\\')); << 477 fPixelSpacingX = atof(datas.substr(0, iss) << 478 fPixelSpacingY = atof(datas.substr(iss + 1 << 479 } << 480 else if (tagDictionary == 0x00200037) { // << 481 std::printf("[0x00200037] Image Orientatio << 482 } << 483 else if (tagDictionary == 0x00200032) { // << 484 std::printf("[0x00200032] Image Position ( << 485 } << 486 else if (tagDictionary == 0x00180050) { // << 487 fSliceThickness = atof(data); << 488 std::printf("[0x00180050] Slice Thickness << 489 } << 490 else if (tagDictionary == 0x00201041) { // << 491 fSliceLocation = atof(data); << 492 std::printf("[0x00201041] Slice Location - << 493 } << 494 else if (tagDictionary == 0x00280004) { // << 495 // ( not used ) << 496 std::printf("[0x00280004] Photometric Inte << 497 } << 498 else if (tagDictionary == 0x00020010) { // << 499 if (strcmp(data, "1.2.840.10008.1.2") == 0 << 500 fImplicitEndian = true; << 501 else if (strncmp(data, "1.2.840.10008.1.2. << 502 fLittleEndian = false; << 503 // else 1.2.840..10008.1.2.1 (explicit lit << 504 << 505 std::printf("[0x00020010] Endian -> %s\n", << 506 } << 507 << 508 // others << 509 else { << 510 // std::printf("[0x%x] -> %s\n", tagDictio << 511 ; << 512 } << 513 } << 514 << 515 //....oooOO0OOooo........oooOO0OOooo........oo << 516 << 517 void DicomHandler::StoreData(DicomPhantomZSlic << 518 { << 519 G4int mean; << 520 G4double density; << 521 G4bool overflow = false; << 522 << 523 if (!dcmPZSH) { << 524 return; << 525 } << 526 337 527 dcmPZSH->SetSliceLocation(fSliceLocation); << 338 // others 528 << 339 else { 529 //----- Print indices of material << 340 std::printf("[0x%x] -> %s\n", tagDictionary, data); 530 if (fCompression == 1) { // no fCompression << 531 for (G4int ww = 0; ww < fRows; ++ww) { << 532 dcmPZSH->AddRow(); << 533 for (G4int xx = 0; xx < fColumns; ++xx) << 534 mean = fTab[ww][xx]; << 535 density = Pixel2density(mean); << 536 dcmPZSH->AddValue(density); << 537 dcmPZSH->AddMateID(GetMaterialIndex(G4 << 538 } << 539 } << 540 } << 541 else { << 542 // density value is the average of a squar << 543 // fCompression*fCompression pixels << 544 for (G4int ww = 0; ww < fRows; ww += fComp << 545 dcmPZSH->AddRow(); << 546 for (G4int xx = 0; xx < fColumns; xx += << 547 overflow = false; << 548 mean = 0; << 549 for (G4int sumx = 0; sumx < fCompressi << 550 for (G4int sumy = 0; sumy < fCompres << 551 if (ww + sumy >= fRows || xx + sum << 552 mean += fTab[ww + sumy][xx + sumx] << 553 } << 554 if (overflow) break; << 555 } << 556 mean /= fCompression * fCompression; << 557 341 558 if (!overflow) { << 559 density = Pixel2density(mean); << 560 dcmPZSH->AddValue(density); << 561 dcmPZSH->AddMateID(GetMaterialIndex( << 562 } << 563 } << 564 } 342 } 565 } << 566 343 567 dcmPZSH->FlipData(); << 568 } 344 } 569 345 570 //....oooOO0OOooo........oooOO0OOooo........oo << 346 void DicomHandler::StoreData(std::ofstream& foutG4DCM) 571 // This function is depreciated as it is handl << 572 // DicomPhantomZSliceHeader::DumpToFile << 573 void DicomHandler::StoreData(std::ofstream& fo << 574 { 347 { 575 G4int mean; 348 G4int mean; 576 G4double density; 349 G4double density; 577 G4bool overflow = false; 350 G4bool overflow = false; >> 351 G4int cpt=1; 578 352 579 //----- Print indices of material << 353 //----- Print indices of material 580 if (fCompression == 1) { // no fCompression << 354 if(compression == 1) { // no compression: each pixel has a density value) 581 for (G4int ww = 0; ww < fRows; ++ww) { << 355 for( G4int ww = 0; ww < rows; ww++) { 582 for (G4int xx = 0; xx < fColumns; ++xx) << 356 for( G4int xx = 0; xx < columns; xx++) { 583 mean = fTab[ww][xx]; << 357 mean = tab[ww][xx]; 584 density = Pixel2density(mean); << 358 density = Pixel2density(mean); 585 foutG4DCM << GetMaterialIndex(G4float( << 359 foutG4DCM << GetMaterialIndex( density ) << " "; 586 } 360 } 587 foutG4DCM << G4endl; 361 foutG4DCM << G4endl; 588 } 362 } 589 } << 363 590 else { << 364 } else { 591 // density value is the average of a squar 365 // density value is the average of a square region of 592 // fCompression*fCompression pixels << 366 // compression*compression pixels 593 for (G4int ww = 0; ww < fRows; ww += fComp << 367 for(G4int ww = 0; ww < rows ;ww += compression ) { 594 for (G4int xx = 0; xx < fColumns; xx += << 368 for(G4int xx = 0; xx < columns ;xx +=compression ) { 595 overflow = false; << 369 overflow = false; 596 mean = 0; << 370 mean = 0; 597 for (G4int sumx = 0; sumx < fCompressi << 371 for(int sumx = 0; sumx < compression; sumx++) { 598 for (G4int sumy = 0; sumy < fCompres << 372 for(int sumy = 0; sumy < compression; sumy++) { 599 if (ww + sumy >= fRows || xx + sum << 373 if(ww+sumy >= rows || xx+sumx >= columns) overflow = true; 600 mean += fTab[ww + sumy][xx + sumx] << 374 mean += tab[ww+sumy][xx+sumx]; 601 } << 375 } 602 if (overflow) break; << 376 if(overflow) break; 603 } << 377 } 604 mean /= fCompression * fCompression; << 378 mean /= compression*compression; 605 << 379 cpt = 1; 606 if (!overflow) { << 380 607 density = Pixel2density(mean); << 381 if(!overflow) { 608 foutG4DCM << GetMaterialIndex(G4floa << 382 G4double density = Pixel2density(mean); 609 } << 383 foutG4DCM << GetMaterialIndex( density ) << " "; >> 384 } 610 } 385 } 611 foutG4DCM << G4endl; 386 foutG4DCM << G4endl; 612 } 387 } >> 388 613 } 389 } 614 390 615 //----- Print densities 391 //----- Print densities 616 if (fCompression == 1) { // no fCompression << 392 if(compression == 1) { // no compression: each pixel has a density value) 617 for (G4int ww = 0; ww < fRows; ww++) { << 393 for( G4int ww = 0; ww < rows; ww++) { 618 for (G4int xx = 0; xx < fColumns; xx++) << 394 for( G4int xx = 0; xx < columns; xx++) { 619 mean = fTab[ww][xx]; << 395 mean = tab[ww][xx]; 620 density = Pixel2density(mean); << 396 density = Pixel2density(mean); 621 foutG4DCM << density << " "; << 397 foutG4DCM << density << " "; 622 if (xx % 8 == 3) foutG4DCM << G4endl; << 398 if( xx%8 == 3 ) foutG4DCM << G4endl; // just for nicer reading 623 } 399 } 624 } 400 } 625 } << 401 626 else { << 402 } else { 627 // density value is the average of a squar 403 // density value is the average of a square region of 628 // fCompression*fCompression pixels << 404 // compression*compression pixels 629 for (G4int ww = 0; ww < fRows; ww += fComp << 405 for(G4int ww = 0; ww < rows ;ww += compression ) { 630 for (G4int xx = 0; xx < fColumns; xx += << 406 for(G4int xx = 0; xx < columns ;xx +=compression ) { 631 overflow = false; << 407 overflow = false; 632 mean = 0; << 408 mean = 0; 633 for (G4int sumx = 0; sumx < fCompressi << 409 for(int sumx = 0; sumx < compression; sumx++) { 634 for (G4int sumy = 0; sumy < fCompres << 410 for(int sumy = 0; sumy < compression; sumy++) { 635 if (ww + sumy >= fRows || xx + sum << 411 if(ww+sumy >= rows || xx+sumx >= columns) overflow = true; 636 mean += fTab[ww + sumy][xx + sumx] << 412 mean += tab[ww+sumy][xx+sumx]; 637 } << 413 } 638 if (overflow) break; << 414 if(overflow) break; 639 } << 415 } 640 mean /= fCompression * fCompression; << 416 mean /= compression*compression; 641 << 417 cpt = 1; 642 if (!overflow) { << 418 643 density = Pixel2density(mean); << 419 if(!overflow) { 644 foutG4DCM << density << " "; << 420 G4double density = Pixel2density(mean); 645 if (xx / fCompression % 8 == 3) fout << 421 foutG4DCM << density << " "; 646 // reading << 422 if( xx/compression%8 == 3 ) foutG4DCM << G4endl; // just for nicer reading 647 } << 423 } 648 } 424 } 649 } 425 } >> 426 650 } 427 } >> 428 651 } 429 } 652 430 653 //....oooOO0OOooo........oooOO0OOooo........oo << 431 void DicomHandler::ReadMaterialIndices( std::ifstream& finData) 654 void DicomHandler::ReadMaterialIndices(std::if << 655 { 432 { 656 unsigned int nMate; << 433 size_t nMate; 657 G4String mateName; 434 G4String mateName; 658 G4float densityMax; << 435 G4double densityMax; 659 finData >> nMate; 436 finData >> nMate; 660 if (finData.eof()) return; << 437 if( finData.eof() ) return; 661 438 662 G4cout << " ReadMaterialIndices " << nMate < 439 G4cout << " ReadMaterialIndices " << nMate << G4endl; 663 for (unsigned int ii = 0; ii < nMate; ++ii) << 440 for( size_t ii = 0; ii < nMate; ii++ ){ 664 finData >> mateName >> densityMax; 441 finData >> mateName >> densityMax; 665 fMaterialIndices[densityMax] = mateName; 442 fMaterialIndices[densityMax] = mateName; 666 // G4cout << ii << " ReadMaterialIndice << 443 G4cout << ii << " ReadMaterialIndices " << mateName << " " << densityMax << G4endl; 667 // << densityMax << G4endl; << 668 } 444 } 669 } << 670 << 671 //....oooOO0OOooo........oooOO0OOooo........oo << 672 445 673 unsigned int DicomHandler::GetMaterialIndex(G4 << 674 { << 675 std::map<G4float, G4String>::const_reverse_i << 676 std::size_t ii = fMaterialIndices.size(); << 677 << 678 for (ite = fMaterialIndices.crbegin(); ite ! << 679 if (density >= (*ite).first) { << 680 break; << 681 } << 682 } << 683 << 684 if (ii == fMaterialIndices.size()) { << 685 ii = fMaterialIndices.size() - 1; << 686 } << 687 << 688 return unsigned(ii); << 689 } 446 } 690 447 691 //....oooOO0OOooo........oooOO0OOooo........oo << 448 size_t DicomHandler::GetMaterialIndex( G4double density ) 692 << 693 G4int DicomHandler::ReadData(FILE* dicom, char << 694 { 449 { 695 G4int returnvalue = 0; << 450 size_t mateID; 696 size_t rflag = 0; << 451 std::map<G4double,G4String>::reverse_iterator ite; 697 << 452 G4int ii = fMaterialIndices.size(); 698 // READING THE PIXELS << 453 for( ite = fMaterialIndices.rbegin(); ite != fMaterialIndices.rend(); ite++, ii-- ) { 699 << 454 if( density >= (*ite).first ) { 700 fTab = new G4int*[fRows]; << 455 break; 701 for (G4int i = 0; i < fRows; ++i) { << 702 fTab[i] = new G4int[fColumns]; << 703 } << 704 << 705 if (fBitAllocated == 8) { // Case 8 bits : << 706 << 707 std::printf("@@@ Error! Picture != 16 bits << 708 std::printf("@@@ Error! Picture != 16 bits << 709 std::printf("@@@ Error! Picture != 16 bits << 710 << 711 unsigned char ch = 0; << 712 << 713 for (G4int j = 0; j < fRows; ++j) { << 714 for (G4int i = 0; i < fColumns; ++i) { << 715 rflag = std::fread(&ch, 1, 1, dicom); << 716 fTab[j][i] = ch * fRescaleSlope + fRes << 717 } << 718 } << 719 returnvalue = 1; << 720 } << 721 else { // from 12 to 16 bits : << 722 char sbuff[2]; << 723 short pixel; << 724 for (G4int j = 0; j < fRows; ++j) { << 725 for (G4int i = 0; i < fColumns; ++i) { << 726 rflag = std::fread(sbuff, 2, 1, dicom) << 727 GetValue(sbuff, pixel); << 728 fTab[j][i] = pixel * fRescaleSlope + f << 729 } << 730 } << 731 } << 732 << 733 // Creation of .g4 files wich contains avera << 734 G4String nameProcessed = filename2 + G4Strin << 735 FILE* fileOut = std::fopen(nameProcessed.c_s << 736 << 737 G4cout << "### Writing of " << nameProcessed << 738 << 739 unsigned int nMate = fMaterialIndices.size() << 740 rflag = std::fwrite(&nMate, sizeof(unsigned << 741 //--- Write materials << 742 for (auto ite = fMaterialIndices.cbegin(); i << 743 G4String mateName = (*ite).second; << 744 for (std::size_t ii = (*ite).second.length << 745 mateName += " "; << 746 } // mateName = const_cast<char*>(((*ite) << 747 << 748 const char* mateNameC = mateName.c_str(); << 749 rflag = std::fwrite(mateNameC, sizeof(char << 750 } << 751 << 752 unsigned int fRowsC = fRows / fCompression; << 753 unsigned int fColumnsC = fColumns / fCompres << 754 unsigned int planesC = 1; << 755 G4float pixelLocationXM = -G4float(fPixelSpa << 756 G4float pixelLocationXP = G4float(fPixelSpac << 757 G4float pixelLocationYM = -G4float(fPixelSpa << 758 G4float pixelLocationYP = G4float(fPixelSpac << 759 G4float fSliceLocationZM = G4float(fSliceLoc << 760 G4float fSliceLocationZP = G4float(fSliceLoc << 761 //--- Write number of voxels (assume only on << 762 rflag = std::fwrite(&fRowsC, sizeof(unsigned << 763 rflag = std::fwrite(&fColumnsC, sizeof(unsig << 764 rflag = std::fwrite(&planesC, sizeof(unsigne << 765 //--- Write minimum and maximum extensions << 766 rflag = std::fwrite(&pixelLocationXM, sizeof << 767 rflag = std::fwrite(&pixelLocationXP, sizeof << 768 rflag = std::fwrite(&pixelLocationYM, sizeof << 769 rflag = std::fwrite(&pixelLocationYP, sizeof << 770 rflag = std::fwrite(&fSliceLocationZM, sizeo << 771 rflag = std::fwrite(&fSliceLocationZP, sizeo << 772 // rflag = std::fwrite(&fCompression, sizeof << 773 << 774 std::printf("%8i %8i\n", fRows, fColumns); << 775 std::printf("%8f %8f\n", fPixelSpacingX, f << 776 std::printf("%8f\n", fSliceThickness); << 777 std::printf("%8f\n", fSliceLocation); << 778 std::printf("%8i\n", fCompression); << 779 << 780 G4int compSize = fCompression; << 781 G4int mean; << 782 G4float density; << 783 G4bool overflow = false; << 784 << 785 //----- Write index of material for each pix << 786 if (compSize == 1) { // no fCompression: ea << 787 for (G4int ww = 0; ww < fRows; ++ww) { << 788 for (G4int xx = 0; xx < fColumns; ++xx) << 789 mean = fTab[ww][xx]; << 790 density = Pixel2density(mean); << 791 unsigned int mateID = GetMaterialIndex << 792 rflag = std::fwrite(&mateID, sizeof(un << 793 } << 794 } << 795 } << 796 else { << 797 // density value is the average of a squar << 798 // fCompression*fCompression pixels << 799 for (G4int ww = 0; ww < fRows; ww += compS << 800 for (G4int xx = 0; xx < fColumns; xx += << 801 overflow = false; << 802 mean = 0; << 803 for (G4int sumx = 0; sumx < compSize; << 804 for (G4int sumy = 0; sumy < compSize << 805 if (ww + sumy >= fRows || xx + sum << 806 mean += fTab[ww + sumy][xx + sumx] << 807 } << 808 if (overflow) break; << 809 } << 810 mean /= compSize * compSize; << 811 << 812 if (!overflow) { << 813 density = Pixel2density(mean); << 814 unsigned int mateID = GetMaterialInd << 815 rflag = std::fwrite(&mateID, sizeof( << 816 } << 817 } << 818 } << 819 } << 820 << 821 //----- Write density for each pixel << 822 if (compSize == 1) { // no fCompression: ea << 823 for (G4int ww = 0; ww < fRows; ++ww) { << 824 for (G4int xx = 0; xx < fColumns; ++xx) << 825 mean = fTab[ww][xx]; << 826 density = Pixel2density(mean); << 827 rflag = std::fwrite(&density, sizeof(G << 828 } << 829 } << 830 } << 831 else { << 832 // density value is the average of a squar << 833 // fCompression*fCompression pixels << 834 for (G4int ww = 0; ww < fRows; ww += compS << 835 for (G4int xx = 0; xx < fColumns; xx += << 836 overflow = false; << 837 mean = 0; << 838 for (G4int sumx = 0; sumx < compSize; << 839 for (G4int sumy = 0; sumy < compSize << 840 if (ww + sumy >= fRows || xx + sum << 841 mean += fTab[ww + sumy][xx + sumx] << 842 } << 843 if (overflow) break; << 844 } << 845 mean /= compSize * compSize; << 846 << 847 if (!overflow) { << 848 density = Pixel2density(mean); << 849 rflag = std::fwrite(&density, sizeof << 850 } << 851 } << 852 } 456 } 853 } 457 } >> 458 //- G4cout << " GetMaterialIndex " << density << " = " << ii << G4endl; >> 459 return ii; 854 460 855 rflag = std::fclose(fileOut); << 856 << 857 delete[] nameProcessed; << 858 << 859 /* for ( G4int i = 0; i < fRows; i ++ ) { << 860 delete [] fTab[i]; << 861 } << 862 delete [] fTab; << 863 */ << 864 << 865 if (rflag) return returnvalue; << 866 return returnvalue; << 867 } << 868 << 869 //....oooOO0OOooo........oooOO0OOooo........oo << 870 << 871 // DICOM HEAD does not use the calibration cur << 872 << 873 #ifdef DICOM_USE_HEAD << 874 void DicomHandler::ReadCalibration() << 875 { << 876 fNbrequali = 0; << 877 fReadCalibration = false; << 878 G4cout << "No calibration curve for the DICO << 879 } 461 } 880 #else << 881 // Separated out of Pixel2density << 882 // No need to read in same calibration EVERY t << 883 // Increases the speed of reading file by seve << 884 462 885 void DicomHandler::ReadCalibration() << 463 // 886 { << 464 G4int DicomHandler::ReadData(FILE *dicom,char * filename2) 887 fNbrequali = 0; << 888 // CT2Density.dat contains the calibration c << 889 // number to physical density << 890 std::ifstream calibration(fCt2DensityFile.c_ << 891 calibration >> fNbrequali; << 892 fValueDensity = new G4double[fNbrequali]; << 893 fValueCT = new G4double[fNbrequali]; << 894 << 895 if (!calibration) { << 896 G4Exception("DicomHandler::ReadFile", "DIC << 897 "@@@ No value to transform pix << 898 } << 899 else { // calibration was successfully open << 900 for (G4int i = 0; i < fNbrequali; ++i) { << 901 calibration >> fValueCT[i] >> fValueDens << 902 } << 903 } << 904 calibration.close(); << 905 fReadCalibration = true; << 906 } << 907 #endif << 908 << 909 #ifdef DICOM_USE_HEAD << 910 G4float DicomHandler::Pixel2density(G4int pixe << 911 { 465 { 912 G4float density = -1; << 466 G4int returnvalue = 0; 913 467 914 // Air << 468 // READING THE PIXELS : 915 if (pixel == -998.) density = 0.001290; << 469 G4int w = 0; 916 // Soft Tissue << 470 G4int len = 0; 917 else if (pixel == 24.) << 471 918 density = 1.00; << 472 tab = new G4int*[rows]; 919 // Brain << 473 for ( G4int i = 0; i < rows; i ++ ) { 920 else if (pixel == 52.) << 474 tab[i] = new G4int[columns]; 921 density = 1.03; << 475 } 922 // Spinal disc << 476 923 else if (pixel == 92.) << 477 if(bitAllocated == 8) { // Case 8 bits : 924 density = 1.10; << 478 925 // Trabecular bone << 479 std::printf("@@@ Error! Picture != 16 bits...\n"); 926 else if (pixel == 197.) << 480 std::printf("@@@ Error! Picture != 16 bits...\n"); 927 density = 1.18; << 481 std::printf("@@@ Error! Picture != 16 bits...\n"); 928 // Cortical Bone << 482 929 else if (pixel == 923.) << 483 unsigned char ch = 0; 930 density = 1.85; << 484 931 // Tooth dentine << 485 len = rows*columns; 932 else if (pixel == 1280.) << 486 for(G4int j = 0; j < rows; j++) { 933 density = 2.14; << 487 for(G4int i = 0; i < columns; i++) { 934 // Tooth enamel << 488 w++; 935 else if (pixel == 2310.) << 489 std::fread( &ch, 1, 1, dicom); 936 density = 2.89; << 490 tab[j][i] = ch*rescaleSlope + rescaleIntercept; >> 491 } >> 492 } >> 493 returnvalue = 1; >> 494 >> 495 } else { // from 12 to 16 bits : >> 496 char sbuff[2]; >> 497 short pixel; >> 498 len = rows*columns; >> 499 for( G4int j = 0; j < rows; j++) { >> 500 for( G4int i = 0; i < columns; i++) { >> 501 w++; >> 502 std::fread(sbuff, 2, 1, dicom); >> 503 GetValue(sbuff, pixel); >> 504 tab[j][i] = pixel*rescaleSlope + rescaleIntercept; >> 505 } >> 506 } >> 507 } >> 508 >> 509 // Creation of .g4 files wich contains averaged density data >> 510 >> 511 char * nameProcessed = new char[FILENAMESIZE]; >> 512 FILE* processed; >> 513 >> 514 std::sprintf(nameProcessed,"%s.g4",filename2); >> 515 processed = std::fopen(nameProcessed,"w+b"); >> 516 std::printf("### Writing of %s ###\n",nameProcessed); >> 517 >> 518 std::fwrite(&rows, 2, 1, processed); >> 519 std::fwrite(&columns, 2, 1, processed); >> 520 std::fwrite(&pixelSpacingX, 8, 1, processed); >> 521 std::fwrite(&pixelSpacingY, 8, 1, processed); >> 522 std::fwrite(&sliceThickness, 8, 1, processed); >> 523 std::fwrite(&sliceLocation, 8, 1, processed); >> 524 std::fwrite(&compression, 2, 1, processed); >> 525 >> 526 std::printf("%8i %8i\n",rows,columns); >> 527 std::printf("%8f %8f\n",pixelSpacingX,pixelSpacingY); >> 528 std::printf("%8f\n", sliceThickness); >> 529 std::printf("%8f\n", sliceLocation); >> 530 std::printf("%8i\n", compression); >> 531 >> 532 G4int compSize = compression; >> 533 G4int mean; >> 534 G4double density; >> 535 G4bool overflow = false; >> 536 G4int cpt=1; >> 537 >> 538 if(compSize == 1) { // no compression: each pixel has a density value) >> 539 for( G4int ww = 0; ww < rows; ww++) { >> 540 for( G4int xx = 0; xx < columns; xx++) { >> 541 mean = tab[ww][xx]; >> 542 density = Pixel2density(mean); >> 543 std::fwrite(&density, sizeof(G4double), 1, processed); >> 544 } >> 545 } >> 546 >> 547 } else { >> 548 // density value is the average of a square region of >> 549 // compression*compression pixels >> 550 for(G4int ww = 0; ww < rows ;ww += compSize ) { >> 551 for(G4int xx = 0; xx < columns ;xx +=compSize ) { >> 552 overflow = false; >> 553 mean = 0; >> 554 for(int sumx = 0; sumx < compSize; sumx++) { >> 555 for(int sumy = 0; sumy < compSize; sumy++) { >> 556 if(ww+sumy >= rows || xx+sumx >= columns) overflow = true; >> 557 mean += tab[ww+sumy][xx+sumx]; >> 558 } >> 559 if(overflow) break; >> 560 } >> 561 mean /= compSize*compSize; >> 562 cpt = 1; >> 563 >> 564 if(!overflow) { >> 565 G4double density = Pixel2density(mean); >> 566 std::fwrite(&density, sizeof(G4double), 1, processed); >> 567 } >> 568 } >> 569 >> 570 } >> 571 } >> 572 std::fclose(processed); >> 573 >> 574 delete [] nameProcessed; >> 575 >> 576 /* for ( G4int i = 0; i < rows; i ++ ) { >> 577 delete [] tab[i]; >> 578 } >> 579 delete [] tab; >> 580 */ >> 581 >> 582 return returnvalue; >> 583 } >> 584 >> 585 /* >> 586 G4int DicomHandler::displayImage(char command[300]) >> 587 { >> 588 // Display DICOM images using ImageMagick >> 589 char commandName[500]; >> 590 std::sprintf(commandName,"display %s",command); >> 591 std::printf(commandName); >> 592 G4int i = system(commandName); >> 593 return (G4int )i; >> 594 } >> 595 */ >> 596 >> 597 G4double DicomHandler::Pixel2density(G4int pixel) >> 598 { >> 599 G4double density = -1.; >> 600 G4int nbrequali = 0; >> 601 G4double deltaCT = 0; >> 602 G4double deltaDensity = 0; >> 603 >> 604 // CT2Density.dat contains the calibration curve to convert CT (Hounsfield) >> 605 // number to physical density >> 606 std::ifstream calibration("CT2Density.dat"); >> 607 calibration >> nbrequali; >> 608 >> 609 G4double * valuedensity = new G4double[nbrequali]; >> 610 G4double * valueCT = new G4double[nbrequali]; >> 611 >> 612 if(!calibration) { >> 613 G4cerr << "@@@ No value to transform pixels in density!" << G4endl; >> 614 exit(1); >> 615 >> 616 } else { // calibration was successfully opened >> 617 for(G4int i = 0; i < nbrequali; i++) { // Loop to store all the pts in CT2Density.dat >> 618 calibration >> valueCT[i] >> valuedensity[i]; >> 619 } >> 620 } >> 621 calibration.close(); >> 622 >> 623 for(G4int j = 1; j < nbrequali; j++) { >> 624 if( pixel >= valueCT[j-1] && pixel < valueCT[j]) { >> 625 >> 626 deltaCT = valueCT[j] - valueCT[j-1]; >> 627 deltaDensity = valuedensity[j] - valuedensity[j-1]; >> 628 >> 629 // interpolating linearly >> 630 density = valuedensity[j] - ((valueCT[j] - pixel)*deltaDensity/deltaCT ); >> 631 break; >> 632 } >> 633 } >> 634 >> 635 if(density < 0.) { >> 636 std::printf("@@@ Error density = %f && Pixel = %i (0x%x) && deltaDensity/deltaCT = %f\n",density,pixel,pixel, deltaDensity/deltaCT); >> 637 } >> 638 >> 639 delete [] valuedensity; >> 640 delete [] valueCT; 937 641 938 return density; << 642 return density; 939 } 643 } 940 644 941 #else << 942 //....oooOO0OOooo........oooOO0OOooo........oo << 943 << 944 G4float DicomHandler::Pixel2density(G4int pixe << 945 { << 946 if (!fReadCalibration) { << 947 ReadCalibration(); << 948 } << 949 << 950 G4float density = -1.; << 951 G4double deltaCT = 0; << 952 G4double deltaDensity = 0; << 953 << 954 for (G4int j = 1; j < fNbrequali; ++j) { << 955 if (pixel >= fValueCT[j - 1] && pixel < fV << 956 deltaCT = fValueCT[j] - fValueCT[j - 1]; << 957 deltaDensity = fValueDensity[j] - fValue << 958 << 959 // interpolating linearly << 960 density = G4float(fValueDensity[j] - ((f << 961 break; << 962 } << 963 } << 964 << 965 if (density < 0.) { << 966 std::printf( << 967 "@@@ Error density = %f && Pixel = %i \ << 968 (0x%x) && deltaDensity/deltaCT = %f\n", << 969 density, pixel, pixel, deltaDensity / de << 970 } << 971 << 972 return density; << 973 } << 974 #endif << 975 //....oooOO0OOooo........oooOO0OOooo........oo << 976 645 977 void DicomHandler::CheckFileFormat() 646 void DicomHandler::CheckFileFormat() 978 { 647 { 979 std::ifstream checkData(fDriverFile.c_str()) << 648 std::ifstream checkData("Data.dat"); 980 char* oneLine = new char[128]; << 649 char * oneLine = new char[128]; 981 650 982 if (!(checkData.is_open())) { // Check exis << 651 if(!(checkData.is_open())) { //Check existance of Data.dat 983 << 984 G4String message = "\nDicomG4 needs Data.d << 985 message += " in command line):\n"; << 986 message += "\tFirst line: number of image << 987 message += "\tSecond line: number of image << 988 message += "\tEach following line contains << 989 message += " except for the .dcm extension << 990 G4Exception("DicomHandler::ReadFile", "DIC << 991 } << 992 652 993 checkData >> fCompression; << 653 G4cout << "\nDicomG4 needs Data.dat :\n\tFirst line: number of image pixel for a " 994 checkData >> fNFiles; << 654 << "voxel (G4Box)\n\tSecond line: number of images (CT slices) to " 995 G4String oneName; << 655 << "read\n\tEach following line contains the name of a Dicom image except " 996 checkData.getline(oneLine, 100); << 656 << "for the .dcm extension\n"; 997 std::ifstream testExistence; << 657 exit(0); 998 G4bool existAlready = true; << 658 } 999 for (G4int rep = 0; rep < fNFiles; ++rep) { << 659 1000 checkData.getline(oneLine, 100); << 660 checkData >> compression; 1001 oneName = oneLine; << 661 checkData >> nFiles; 1002 oneName += ".g4dcm"; // create dicomFile << 662 G4String oneName; 1003 G4cout << fNFiles << " test file " << one << 663 checkData.getline(oneLine,100); 1004 testExistence.open(oneName.data()); << 664 std::ifstream testExistence; 1005 if (!(testExistence.is_open())) { << 665 G4bool existAlready = true; 1006 existAlready = false; << 666 for(G4int rep = 0; rep < nFiles; rep++) { >> 667 checkData.getline(oneLine,100); >> 668 oneName = oneLine; >> 669 oneName += ".g4dcm"; // create dicomFile.g4dcm >> 670 G4cout << nFiles << " test file " << oneName << G4endl; >> 671 testExistence.open(oneName.data()); >> 672 if(!(testExistence.is_open())) { >> 673 existAlready = false; >> 674 testExistence.clear(); >> 675 testExistence.close(); >> 676 } 1007 testExistence.clear(); 677 testExistence.clear(); 1008 testExistence.close(); 678 testExistence.close(); 1009 } 679 } 1010 testExistence.clear(); << 1011 testExistence.close(); << 1012 } << 1013 << 1014 ReadMaterialIndices(checkData); << 1015 << 1016 checkData.close(); << 1017 delete[] oneLine; << 1018 << 1019 if (existAlready == false) { // The files << 1020 << 1021 G4cout << "\nAll the necessary images wer << 1022 << ", starting with .dcm images\n" << 1023 << 1024 FILE* dicom; << 1025 FILE* lecturePref; << 1026 char* fCompressionc = new char[LINEBUFFSI << 1027 char* maxc = new char[LINEBUFFSIZE]; << 1028 // char name[300], inputFile[300]; << 1029 char* inputFile = new char[FILENAMESIZE]; << 1030 G4int rflag; << 1031 lecturePref = std::fopen(fDriverFile.c_st << 1032 << 1033 rflag = std::fscanf(lecturePref, "%s", fC << 1034 fCompression = atoi(fCompressionc); << 1035 rflag = std::fscanf(lecturePref, "%s", ma << 1036 fNFiles = atoi(maxc); << 1037 G4cout << " fNFiles " << fNFiles << G4end << 1038 << 1039 ///////////////////// << 1040 << 1041 #ifdef DICOM_USE_HEAD << 1042 for (G4int i = 1; i <= fNFiles; ++i) { / << 1043 rflag = std::fscanf(lecturePref, "%s", << 1044 G4String path = GetDicomDataPath() + "/ << 1045 << 1046 G4String name = inputFile + G4String(". << 1047 // Writes the results to a character st << 1048 << 1049 G4String name2 = path + name; << 1050 // Open input file and give it to gest << 1051 G4cout << "### Opening " << name2 << " << 1052 dicom = std::fopen(name2.c_str(), "rb") << 1053 // Reading the .dcm in two steps: << 1054 // 1. reading the header << 1055 // 2. reading the pixel data and s << 1056 if (dicom != 0) { << 1057 ReadFile(dicom, inputFile); << 1058 } << 1059 else { << 1060 G4cout << "\nError opening file : " < << 1061 } << 1062 rflag = std::fclose(dicom); << 1063 } << 1064 #else << 1065 << 1066 for (G4int i = 1; i <= fNFiles; ++i) { / << 1067 rflag = std::fscanf(lecturePref, "%s", << 1068 << 1069 G4String name = inputFile + G4String(". << 1070 // Writes the results to a character st << 1071 << 1072 // G4cout << "check: " << name << G4end << 1073 // Open input file and give it to gest << 1074 G4cout << "### Opening " << name << " a << 1075 dicom = std::fopen(name.c_str(), "rb"); << 1076 // Reading the .dcm in two steps: << 1077 // 1. reading the header << 1078 // 2. reading the pixel data and s << 1079 if (dicom != 0) { << 1080 ReadFile(dicom, inputFile); << 1081 } << 1082 else { << 1083 G4cout << "\nError opening file : " < << 1084 } << 1085 rflag = std::fclose(dicom); << 1086 } << 1087 #endif << 1088 << 1089 rflag = std::fclose(lecturePref); << 1090 << 1091 // Checks the spacing is correct. Dumps t << 1092 fMergedSlices->CheckSlices(); << 1093 << 1094 delete[] fCompressionc; << 1095 delete[] maxc; << 1096 delete[] inputFile; << 1097 if (rflag) return; << 1098 } << 1099 << 1100 if (fValueDensity) { << 1101 delete[] fValueDensity; << 1102 } << 1103 if (fValueCT) { << 1104 delete[] fValueCT; << 1105 } << 1106 if (fMergedSlices) { << 1107 delete fMergedSlices; << 1108 } << 1109 } << 1110 << 1111 //....oooOO0OOooo........oooOO0OOooo........o << 1112 << 1113 G4int DicomHandler::read_defined_nested(FILE* << 1114 { << 1115 // VARIABLES << 1116 unsigned short item_GroupNumber; << 1117 unsigned short item_ElementNumber; << 1118 G4int item_Length; << 1119 G4int items_array_length = 0; << 1120 char* buffer = new char[LINEBUFFSIZE]; << 1121 size_t rflag = 0; << 1122 << 1123 while (items_array_length < SQ_Length) { << 1124 rflag = std::fread(buffer, 2, 1, nested); << 1125 GetValue(buffer, item_GroupNumber); << 1126 << 1127 rflag = std::fread(buffer, 2, 1, nested); << 1128 GetValue(buffer, item_ElementNumber); << 1129 << 1130 rflag = std::fread(buffer, 4, 1, nested); << 1131 GetValue(buffer, item_Length); << 1132 680 1133 rflag = std::fread(buffer, item_Length, 1 << 681 ReadMaterialIndices( checkData ); 1134 682 1135 items_array_length = items_array_length + << 683 checkData.close(); 1136 } << 684 delete [] oneLine; 1137 << 1138 delete[] buffer; << 1139 685 1140 if (SQ_Length > items_array_length) << 686 if( existAlready == false ) { // The files *.g4dcm have to be created 1141 return 0; << 1142 else << 1143 return 1; << 1144 if (rflag) return 1; << 1145 } << 1146 687 1147 //....oooOO0OOooo........oooOO0OOooo........o << 688 G4cout << "\nAll the necessary images were not found in processed form, starting " 1148 << 689 << "with .dcm images\n"; 1149 void DicomHandler::read_undefined_nested(FILE << 690 1150 { << 691 FILE * dicom; 1151 // VARIABLES << 692 FILE * lecturePref; 1152 unsigned short item_GroupNumber; << 693 char * compressionc = new char[LINEBUFFSIZE]; 1153 unsigned short item_ElementNumber; << 694 char * maxc = new char[LINEBUFFSIZE]; 1154 unsigned int item_Length; << 695 //char name[300], inputFile[300]; 1155 char* buffer = new char[LINEBUFFSIZE]; << 696 char * name = new char[FILENAMESIZE]; 1156 size_t rflag = 0; << 697 char * inputFile = new char[FILENAMESIZE]; 1157 << 698 1158 do { << 699 lecturePref = std::fopen("Data.dat","r"); 1159 rflag = std::fread(buffer, 2, 1, nested); << 700 std::fscanf(lecturePref,"%s",compressionc); 1160 GetValue(buffer, item_GroupNumber); << 701 compression = atoi(compressionc); 1161 << 702 std::fscanf(lecturePref,"%s",maxc); 1162 rflag = std::fread(buffer, 2, 1, nested); << 703 nFiles = atoi(maxc); 1163 GetValue(buffer, item_ElementNumber); << 704 G4cout << " nFiles " << nFiles << G4endl; 1164 << 705 1165 rflag = std::fread(buffer, 4, 1, nested); << 706 for( G4int i = 1; i <= nFiles; i++ ) { // Begin loop on filenames 1166 GetValue(buffer, item_Length); << 707 1167 << 708 std::fscanf(lecturePref,"%s",inputFile); 1168 if (item_Length != 0xffffffff) << 709 std::sprintf(name,"%s.dcm",inputFile); 1169 rflag = std::fread(buffer, item_Length, << 710 std::cout << "check 1: " << name << std::endl; 1170 else << 711 // Open input file and give it to gestion_dicom : 1171 read_undefined_item(nested); << 712 std::printf("### Opening %s and reading :\n",name); >> 713 dicom = std::fopen(name,"rb"); >> 714 // Reading the .dcm in two steps: >> 715 // 1. reading the header >> 716 // 2. reading the pixel data and store the density in Moyenne.dat >> 717 if( dicom != 0 ) { >> 718 ReadFile(dicom,inputFile); >> 719 } else { >> 720 G4cout << "\nError opening file : " << name << G4endl; >> 721 } >> 722 std::fclose(dicom); >> 723 } >> 724 std::fclose(lecturePref); >> 725 >> 726 delete [] compressionc; >> 727 delete [] maxc; >> 728 delete [] name; >> 729 delete [] inputFile; 1172 730 1173 } while (item_GroupNumber != 0xFFFE || item << 731 } 1174 732 1175 delete[] buffer; << 1176 if (rflag) return; << 1177 } 733 } 1178 734 1179 //....oooOO0OOooo........oooOO0OOooo........o << 1180 << 1181 void DicomHandler::read_undefined_item(FILE* << 1182 { << 1183 // VARIABLES << 1184 unsigned short item_GroupNumber; << 1185 unsigned short item_ElementNumber; << 1186 G4int item_Length; << 1187 size_t rflag = 0; << 1188 char* buffer = new char[LINEBUFFSIZE]; << 1189 << 1190 do { << 1191 rflag = std::fread(buffer, 2, 1, nested); << 1192 GetValue(buffer, item_GroupNumber); << 1193 << 1194 rflag = std::fread(buffer, 2, 1, nested); << 1195 GetValue(buffer, item_ElementNumber); << 1196 735 1197 rflag = std::fread(buffer, 4, 1, nested); << 736 template <class Type> 1198 GetValue(buffer, item_Length); << 737 void DicomHandler::GetValue(char * _val, Type & _rval) { 1199 738 1200 if (item_Length != 0) rflag = std::fread( << 1201 << 1202 } while (item_GroupNumber != 0xFFFE || item << 1203 << 1204 delete[] buffer; << 1205 if (rflag) return; << 1206 } << 1207 << 1208 //....oooOO0OOooo........oooOO0OOooo........o << 1209 << 1210 template<class Type> << 1211 void DicomHandler::GetValue(char* _val, Type& << 1212 { << 1213 #if BYTE_ORDER == BIG_ENDIAN 739 #if BYTE_ORDER == BIG_ENDIAN 1214 if (fLittleEndian) { // little endian << 740 if(littleEndian) { // little endian 1215 #else // BYTE_ORDER == LITTLE_ENDIAN << 741 #else // BYTE_ORDER == LITTLE_ENDIAN 1216 if (!fLittleEndian) { // big endian << 742 if(!littleEndian) { // big endian 1217 #endif 743 #endif 1218 const G4int SIZE = sizeof(_rval); << 744 const int SIZE = sizeof(_rval); 1219 char ctemp; << 745 char ctemp; 1220 for (G4int i = 0; i < SIZE / 2; ++i) { << 746 for(int i = 0; i < SIZE/2; i++) { 1221 ctemp = _val[i]; << 747 ctemp = _val[i]; 1222 _val[i] = _val[SIZE - 1 - i]; << 748 _val[i] = _val[SIZE - 1 - i]; 1223 _val[SIZE - 1 - i] = ctemp; << 749 _val[SIZE - 1 - i] = ctemp; >> 750 } 1224 } 751 } 1225 } << 752 _rval = *(Type *)_val; 1226 _rval = *(Type*)_val; << 1227 } 753 } 1228 << 1229 //....oooOO0OOooo........oooOO0OOooo........o << 1230 754