Geant4 Cross Reference |
1 // 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 /// \file Hadr09.cc 28 /// \brief Main program of the hadronic/Hadr09 29 // 30 //-------------------------------------------- 31 // This program shows how to use the class Had 32 // The class HadronicGenerator is a kind of "h 33 // provides Geant4 final states (i.e. secondar 34 // hadron-nuclear inelastic collisions. 35 // Please see the class itself for more inform 36 // 37 // The use of the class Hadronic Generator is 38 // the constructor needs to be invoked only on 39 // of the Geant4 "physics case" to consider (" 40 // considered as default is the name is not sp 41 // method needs to be called at each collision 42 // collision (hadron, energy, direction, mater 43 // The class HadronicGenerator is expected to 44 // multi-threaded environment with "external" 45 // that are not necessarily managed by Geant4 46 // each thread should have its own instance of 47 // 48 // See the string "***LOOKHERE***" below for t 49 // of this example: the "physics case", the se 50 // which to sample the projectile (i.e. whethe 51 // hadron or an ion - in the case of hadron pr 52 // is possible from which to sample at each co 53 // ion projectile, only one type of ion needs 54 // the kinetic energy of the projectile (which 55 // an interval), whether the direction of the 56 // sampled at each collision, the target mater 57 // is possible, from which the target material 58 // collision, and then from this target materi 59 // will be chosen randomly by Geant4 itself), 60 // some information or not and how frequently. 61 // Once a well-defined type of hadron-nucleus 62 // inelastic collision has been chosen, the me 63 // HadronicGenerator::GenerateInteraction 64 // returns the secondaries produced by that in 65 // of a G4VParticleChange object). 66 // Some information about this final-state is 67 // 68 // Usage: Hadr09 69 //-------------------------------------------- 70 71 //....oooOO0OOooo........oooOO0OOooo........oo 72 //....oooOO0OOooo........oooOO0OOooo........oo 73 74 #include <iomanip> 75 #include "globals.hh" 76 #include "G4ios.hh" 77 #include "G4PhysicalConstants.hh" 78 #include "G4SystemOfUnits.hh" 79 #include "G4Material.hh" 80 #include "G4NistManager.hh" 81 #include "G4VParticleChange.hh" 82 #include "G4UnitsTable.hh" 83 #include "G4SystemOfUnits.hh" 84 #include "HadronicGenerator.hh" 85 #include "G4GenericIon.hh" 86 #include "G4ProcessManager.hh" 87 #include "G4ParticleTable.hh" 88 #include "G4IonTable.hh" 89 #include "CLHEP/Random/Randomize.h" 90 #include "CLHEP/Random/Ranlux64Engine.h" 91 92 //....oooOO0OOooo........oooOO0OOooo........oo 93 94 int main( int , char** ) { 95 96 G4cout << "=== Test of the HadronicGenerator 97 98 // See the HadronicGenerator class for the p 99 // ( In short, it is the name of the Geant4 100 // the collision, with the possibility of 101 // a given energy interval, as in physics 102 //const G4String namePhysics = "FTFP_BERT"; 103 //const G4String namePhysics = "FTFP_BERT_AT 104 //const G4String namePhysics = "QGSP_BERT"; 105 //const G4String namePhysics = "QGSP_BIC"; 106 //const G4String namePhysics = "FTFP_INCLXX" 107 const G4String namePhysics = "FTFP"; 108 //const G4String namePhysics = "QGSP"; 109 //const G4String namePhysics = "BERT"; 110 //const G4String namePhysics = "BIC"; 111 //const G4String namePhysics = "IonBIC"; 112 //const G4String namePhysics = "INCL"; 113 114 // The kinetic energy of the projectile will 115 // in the interval [minEnergy, maxEnergy]. 116 G4double minEnergy = 1.0*CLHEP::GeV; //*** 117 G4double maxEnergy = 30.0*CLHEP::GeV; //*** 118 119 const G4int numCollisions = 1000; //***LOOK 120 121 // Enable or disable the print out of this p 122 // produced in each collisions is printed ou 123 // collisions, the list of secondaries is pr 124 const G4bool isPrintingEnabled = true; 125 const G4int printingGap = 100; 126 127 // Vector of Geant4 names of hadron projecti 128 // (with uniform probability) for each colli 129 // Note: comment out the corresponding line 130 std::vector< G4String > vecProjectiles; //* 131 vecProjectiles.push_back( "pi-" ); 132 //Note: vecProjectiles.push_back( "pi0" ); 133 vecProjectiles.push_back( "pi+" ); 134 vecProjectiles.push_back( "kaon-" ); 135 vecProjectiles.push_back( "kaon+" ); 136 vecProjectiles.push_back( "kaon0L" ); 137 vecProjectiles.push_back( "kaon0S" ); 138 //Note: vecProjectiles.push_back( "eta" ); 139 //Note: vecProjectiles.push_back( "eta_prime 140 vecProjectiles.push_back( "proton" ); 141 vecProjectiles.push_back( "neutron" ); 142 vecProjectiles.push_back( "deuteron" ); 143 vecProjectiles.push_back( "triton" ); 144 vecProjectiles.push_back( "He3" ); 145 vecProjectiles.push_back( "alpha" ); 146 vecProjectiles.push_back( "lambda" ); 147 vecProjectiles.push_back( "sigma-" ); 148 //Note: vecProjectiles.push_back( "sigma0" ) 149 vecProjectiles.push_back( "sigma+" ); 150 vecProjectiles.push_back( "xi-" ); 151 vecProjectiles.push_back( "xi0" ); 152 vecProjectiles.push_back( "omega-" ); 153 vecProjectiles.push_back( "anti_proton" ); 154 vecProjectiles.push_back( "anti_neutron" ); 155 vecProjectiles.push_back( "anti_lambda" ); 156 vecProjectiles.push_back( "anti_sigma-" ); 157 //Note: vecProjectiles.push_back( "anti_sigm 158 vecProjectiles.push_back( "anti_sigma+" ); 159 vecProjectiles.push_back( "anti_xi-" ); 160 vecProjectiles.push_back( "anti_xi0" ); 161 vecProjectiles.push_back( "anti_omega-" ); 162 vecProjectiles.push_back( "anti_deuteron" ); 163 vecProjectiles.push_back( "anti_triton" ); 164 vecProjectiles.push_back( "anti_He3" ); 165 vecProjectiles.push_back( "anti_alpha" ); 166 // Charm and bottom hadrons 167 vecProjectiles.push_back( "D+" ); 168 vecProjectiles.push_back( "D-" ); 169 vecProjectiles.push_back( "D0" ); 170 vecProjectiles.push_back( "anti_D0" ); 171 vecProjectiles.push_back( "Ds+" ); 172 vecProjectiles.push_back( "Ds-" ); 173 //Note: vecProjectiles.push_back( "etac" ); 174 //Note: vecProjectiles.push_back( "J/psi" ); 175 vecProjectiles.push_back( "B+" ); 176 vecProjectiles.push_back( "B-" ); 177 vecProjectiles.push_back( "B0" ); 178 vecProjectiles.push_back( "anti_B0" ); 179 vecProjectiles.push_back( "Bs0" ); 180 vecProjectiles.push_back( "anti_Bs0" ); 181 vecProjectiles.push_back( "Bc+" ); 182 vecProjectiles.push_back( "Bc-" ); 183 //Note: vecProjectiles.push_back( "Upsilon" 184 vecProjectiles.push_back( "lambda_c+" ); 185 vecProjectiles.push_back( "anti_lambda_c+" ) 186 //Note: vecProjectiles.push_back( "sigma_c+" 187 //Note: vecProjectiles.push_back( "anti_sigm 188 //Note: vecProjectiles.push_back( "sigma_c0" 189 //Note: vecProjectiles.push_back( "anti_sigm 190 //Note: vecProjectiles.push_back( "sigma_c++ 191 //Note: vecProjectiles.push_back( "anti_sigm 192 vecProjectiles.push_back( "xi_c+" ); 193 vecProjectiles.push_back( "anti_xi_c+" ); 194 vecProjectiles.push_back( "xi_c0" ); 195 vecProjectiles.push_back( "anti_xi_c0" ); 196 vecProjectiles.push_back( "omega_c0" ); 197 vecProjectiles.push_back( "anti_omega_c0" ); 198 vecProjectiles.push_back( "lambda_b" ); 199 vecProjectiles.push_back( "anti_lambda_b" ); 200 //Note: vecProjectiles.push_back( "sigma_b+" 201 //Note: vecProjectiles.push_back( "anti_sigm 202 //Note: vecProjectiles.push_back( "sigma_b0" 203 //Note: vecProjectiles.push_back( "sigma_b0" 204 //Note: vecProjectiles.push_back( "sigma_b-" 205 //Note: vecProjectiles.push_back( "anti_sigm 206 vecProjectiles.push_back( "xi_b0" ); 207 vecProjectiles.push_back( "anti_xi_b0" ); 208 vecProjectiles.push_back( "xi_b-" ); 209 vecProjectiles.push_back( "anti_xi_b-" ); 210 vecProjectiles.push_back( "omega_b-" ); 211 vecProjectiles.push_back( "anti_omega_b-" ); 212 213 G4ParticleDefinition* projectileNucleus = nu 214 G4GenericIon* gion = G4GenericIon::GenericIo 215 gion->SetProcessManager( new G4ProcessManage 216 G4ParticleTable* partTable = G4ParticleTable 217 G4IonTable* ions = partTable->GetIonTable(); 218 partTable->SetReadiness(); 219 ions->CreateAllIon(); 220 ions->CreateAllIsomer(); 221 222 const G4bool isProjectileIon = true; //*** 223 if ( isProjectileIon ) { 224 minEnergy = 40.0*13.0*CLHEP::GeV; //*** 225 maxEnergy = 40.0*13.0*CLHEP::GeV; //*** 226 G4int ionZ = 18, ionA = 40; //*** 227 projectileNucleus = partTable->GetIonTable 228 } 229 230 // Vector of Geant4 NIST names of materials: 231 // (with uniform probability) for each colli 232 // Note: comment out the corresponding line 233 // or, vice versa, add a new line to e 234 std::vector< G4String > vecMaterials; //*** 235 //vecMaterials.push_back( "G4_H" ); 236 //vecMaterials.push_back( "G4_He" ); 237 //vecMaterials.push_back( "G4_Be" ); 238 //vecMaterials.push_back( "G4_C" ); 239 //vecMaterials.push_back( "G4_Al" ); 240 //vecMaterials.push_back( "G4_Si" ); 241 vecMaterials.push_back( "G4_Sc" ); 242 //vecMaterials.push_back( "G4_Ar" ); 243 //vecMaterials.push_back( "G4_Fe" ); 244 //vecMaterials.push_back( "G4_Cu" ); 245 //vecMaterials.push_back( "G4_W" ); 246 //vecMaterials.push_back( "G4_Pb" ); 247 248 const G4int numProjectiles = vecProjectiles. 249 const G4int numMaterials = vecMaterials.size 250 251 G4cout << G4endl 252 << "================= Configuration 253 << "Model: " << namePhysics << G4endl 254 << "Ekin: [ " << minEnergy/CLHEP::GeV 255 << " ] GeV" << G4endl 256 << "Number of collisions: " << numCo 257 << "Number of hadron projectiles: " < 258 << "Number of materials: " << numMa 259 << "IsIonProjectile: " << ( projectileNucle 260 << ( projectileNucleus != nullptr ? p 261 << "================================= 262 << G4endl; 263 264 CLHEP::Ranlux64Engine defaultEngine( 1234567 265 CLHEP::HepRandom::setTheEngine( &defaultEngi 266 G4int seed = time( NULL ); 267 CLHEP::HepRandom::setTheSeed( seed ); 268 G4cout << G4endl << " Initial seed = " << se 269 270 // Instanciate the HadronicGenerator providi 271 HadronicGenerator* theHadronicGenerator = ne 272 //****************************************** 273 274 if ( theHadronicGenerator == nullptr ) { 275 G4cerr << "ERROR: theHadronicGenerator is 276 return 1; 277 } else if ( ! theHadronicGenerator->IsPhysic 278 G4cerr << "ERROR: this physics case is NOT 279 return 2; 280 } 281 282 // Loop over the collisions 283 G4double rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, 284 G4VParticleChange* aChange = nullptr; 285 for ( G4int i = 0; i < numCollisions; ++i ) 286 // Draw some random numbers to select the 287 // projectile hadron, projectile kinetic e 288 rnd1 = CLHEP::HepRandom::getTheEngine()->f 289 rnd2 = CLHEP::HepRandom::getTheEngine()->f 290 rnd3 = CLHEP::HepRandom::getTheEngine()->f 291 rnd4 = CLHEP::HepRandom::getTheEngine()->f 292 rnd5 = CLHEP::HepRandom::getTheEngine()->f 293 rnd6 = CLHEP::HepRandom::getTheEngine()->f 294 // Sample the projectile kinetic energy 295 projectileEnergy = minEnergy + rnd1*( maxE 296 if ( projectileEnergy <= 0.0 ) projectileE 297 // Sample the projectile direction 298 normalization = 1.0 / std::sqrt( rnd2*rnd2 299 const G4bool isOnSmearingDirection = false 300 G4ThreeVector aDirection = G4ThreeVector( 301 if ( isOnSmearingDirection ) { 302 aDirection = G4ThreeVector( normalizatio 303 } 304 // Sample the projectile hadron from the v 305 G4int index_projectile = std::trunc( rnd5* 306 G4String nameProjectile = vecProjectiles[ 307 G4ParticleDefinition* projectile = partTab 308 if ( projectileNucleus ) { 309 nameProjectile = projectileNucleus->GetP 310 projectile = projectileNucleus; 311 } 312 // Sample the target material from the vec 313 // (Note: the target nucleus will be sampl 314 G4int index_material = std::trunc( rnd6*nu 315 G4String nameMaterial = vecMaterials[ inde 316 G4Material* material = G4NistManager::Inst 317 if ( material == nullptr ) { 318 G4cerr << "ERROR: Material " << nameMate 319 return 3; 320 } 321 if ( isPrintingEnabled ) { 322 G4cout << "\t Collision " << i << " ; pr 323 if ( projectileNucleus ) { 324 G4cout << " ; Ekin[MeV]/nucleon=" << p 325 static_cast< G4double >( std::abs( project 326 } else { 327 G4cout << " ; Ekin[MeV]=" << projectil 328 } 329 G4cout << " ; direction=" << aDirection 330 } 331 332 // Call here the "hadronic generator" to g 333 aChange = theHadronicGenerator->GenerateIn 334 /* *************************************** 335 336 G4int nsec = aChange ? aChange->GetNumberO 337 G4bool isPrintingOfSecondariesEnabled = fa 338 if ( isPrintingEnabled ) { 339 G4cout << G4endl << "\t --> #secondaries 340 << " ; impactParameter[fm]=" << t 341 << " ; #projectileSpectatorNucleons=" < 342 << " ; #targetSpectatorNucleons=" << th 343 << " ; #NNcollisions=" << theHadronicGe 344 if ( i % printingGap == 0 ) { 345 isPrintingOfSecondariesEnabled = true; 346 G4cout << "\t \t List of produced seco 347 } 348 } 349 // Loop over produced secondaries and even 350 for ( G4int j = 0; j < nsec; ++j ) { 351 const G4DynamicParticle* sec = aChange-> 352 if ( isPrintingOfSecondariesEnabled ) { 353 G4cout << "\t \t \t j=" << j << "\t" < 354 << "\t p=" << sec->Get4Momentum 355 } 356 delete aChange->GetSecondary(j); 357 } 358 if ( aChange ) aChange->Clear(); 359 } 360 361 G4cout << G4endl << " Final random number = 362 << G4endl << "=== End of test ===" << 363 } 364 365 //....oooOO0OOooo........oooOO0OOooo........oo