Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/hadronic/Hadr01/README

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/extended/hadronic/Hadr01/README (Version 11.3.0) and /examples/extended/hadronic/Hadr01/README (Version 8.2)


  1      =========================================      1      =========================================================
  2      Geant4 - an Object-Oriented Toolkit for S      2      Geant4 - an Object-Oriented Toolkit for Simulation in HEP
  3      =========================================      3      =========================================================
  4                                                     4 
  5                                                     5 
  6                                  HADR01             6                                  HADR01
  7                                                     7 
  8             A.Bagulya, I.Gudowska, V.Ivanchenk      8             A.Bagulya, I.Gudowska, V.Ivanchenko, N.Starkov
  9                        CERN, Geneva, Switzerla      9                        CERN, Geneva, Switzerland
 10             Karolinska Institute & Hospital, S     10             Karolinska Institute & Hospital, Stockholm, Sweden
 11                Lebedev Physical Institute, Mos     11                Lebedev Physical Institute, Moscow, Russia
 12                                                    12 
 13                                                    13 
 14 This example application is based on the appli     14 This example application is based on the application IION developed for
 15 simulation of proton or ion beam interaction w     15 simulation of proton or ion beam interaction with a water target. Different 
 16 aspects of beam target interaction are demonst     16 aspects of beam target interaction are demonstrating in the example including 
 17 longitudinal profile of energy deposition, spe <<  17 logitudinal profile of energy deposition, spectra of secondary  particles,
 18 spectra of particles leaving the target. The r     18 spectra of particles leaving the target. The results are presenting in a form
 19 of average numbers and histograms.                 19 of average numbers and histograms. 
 20                                                    20 
 21                                                    21 
 22                            GEOMETRY                22                            GEOMETRY
 23                                                    23 
 24 The Target volume is a cylinder placed inside  <<  24 The Target volume is a cilinder placed inside Check cilindrical volume. The 
 25 Check volume is placed inside the World volume     25 Check volume is placed inside the World volume. The radius and the length of
 26 the Check volume are 1 mm larger than the radi <<  26 the Check volume are 1 mm larger than the radiaus and the length of the Target.
 27 The material of the Check volume is the same a     27 The material of the Check volume is the same as the World material.  The World
 28 volume has the sizes 10 mm larger than that of <<  28 volume has the sizes 10 mm larger than that of the Target volume.  Any naterial
 29 from the Geant4 database can be defined. The d     29 from the Geant4 database can be defined. The default World  material is
 30 G4Galactic and the default  Target material is     30 G4Galactic and the default  Target material is aluminum. The Target is
 31 subdivided on number of equal slices. Followin <<  31 subdivided on number of equal slices. Follwoing UI commands are available to
 32 modify the geometry:                               32 modify the geometry:
 33                                                    33 
 34 /testhadr/TargetMat     G4_Pb                      34 /testhadr/TargetMat     G4_Pb
 35 /testhadr/WorldMat      G4_AIR                     35 /testhadr/WorldMat      G4_AIR
 36 /testhadr/TargetRadius  10 mm                      36 /testhadr/TargetRadius  10 mm
 37 /testhadr/TargetLength  20 cm                      37 /testhadr/TargetLength  20 cm
 38 /testhadr/NumberDivZ    200                        38 /testhadr/NumberDivZ    200
 39                                                    39 
 40 Beam direction coincides with the target axis  <<  40 If geometry was changed between two runs, then the follwoing command need to
                                                   >>  41 be executed:
                                                   >>  42 
                                                   >>  43 /testhadr/Update
                                                   >>  44 
                                                   >>  45 Beam direction coinsides with the target axis and is Z axis in the global
 41 coordinate system. The beam starts 5 mm in fro     46 coordinate system. The beam starts 5 mm in front of the target. G4ParticleGun
 42 is used as a primary generator. The energy and     47 is used as a primary generator. The energy and the type of the beam can be
 43 defined via standard UI commands                   48 defined via standard UI commands
 44                                                    49 
 45 /gun/energy   15 GeV                               50 /gun/energy   15 GeV
 46 /gun/particle proton                               51 /gun/particle proton
 47                                                    52 
 48 Default beam position is -(targetHalfLength +      53 Default beam position is -(targetHalfLength + 5*mm) and direction along Z axis.
 49 Beam position and direction can be changed by      54 Beam position and direction can be changed by gun UI commands:
 50                                                    55 
 51 /gun/position  1 10 3 mm                           56 /gun/position  1 10 3 mm
 52 /gun/direction 1 0 0                               57 /gun/direction 1 0 0
 53                                                    58 
 54 however, position command is active only if be     59 however, position command is active only if before it the flag is set
 55                                                    60 
 56 /testhadr/DefaultBeamPosition false                61 /testhadr/DefaultBeamPosition false   
 57                                                    62  
 58                            SCORING                 63                            SCORING
 59                                                    64 
 60 The scoring is performed with the help of User     65 The scoring is performed with the help of UserStackingAction class and two
 61 sensitive detector  classes: one associated wi     66 sensitive detector  classes: one associated with a target slice, another with
 62 the Check volume. Each secondary particle is s     67 the Check volume. Each secondary particle is scored by the StackingAction.  In
 63 the StackingAction it is also possible to kill     68 the StackingAction it is also possible to kill all or one type of secondary 
 64 particles                                          69 particles 
 65                                                    70 
 66 /testhadr/Kill             neutron                 71 /testhadr/Kill             neutron
 67 /testhadr/KillAllSecondaries                       72 /testhadr/KillAllSecondaries  
 68                                                    73 
 69 To control running the following options are a     74 To control running the following options are available:
 70                                                    75 
 71 /testhadr/PrintModulo      100                     76 /testhadr/PrintModulo      100
 72 /testhadr/DebugEvent       977                     77 /testhadr/DebugEvent       977
 73                                                    78 
 74 The last command selects an events, for which      79 The last command selects an events, for which "/tracking/verbose 2" level
 75 of printout is established.                        80 of printout is established.
 76                                                    81 
 77                                                    82 
 78                            PHYSICS                 83                            PHYSICS
 79                                                    84 
 80 PhysicsList of the application uses reference  <<  85 PhysicsList of the application uses components, which are distributed with
 81 which are distributed with Geant4 in /geant4/p <<  86 Geant4 in /geant4/physics_lists subdirectory. So, before compiling hadro01 it
 82                                                <<  87 is necessary to compile physics_lists
 83 The reference Physics List name may be defined << 
 84 run command:                                   << 
 85                                                    88 
 86 Hadr01 my.macro QGSP_BERT                      <<  89 The choice of the physics is provided by the UI command:
 87                                                << 
 88 If 3d argument is not set then the PHYSLIST en << 
 89 If 3d argument is set, it is possible to add t << 
 90 which defines overlap energies between cascade << 
 91                                                    90 
 92 Hadr01 my.macro QGSP_BERT 3.5 8.0              <<  91 /testhadr/Physics     QGSP
 93                                                    92 
 94 If 6 arguments are used the last enabling addi <<  93 The command 
 95 physics on top of any reference Physics List.  << 
 96                                                    94 
 97 Hadr01 my.macro QGSP_BERT 3.5 8.0 CI           <<  95 /testhadr/Physics     PHYSLIST
 98                                                    96 
 99 If both 3d argument and the environment variab <<  97 allows allows to download a physics configuration defined by an environment
100 reference Phsyics Lists is not instantiated, i <<  98 variable PHYSLIST. 
101 is used built from components, which may be co << 
102 The choice of the physics is provided by the U << 
103                                                    99 
104 /testhadr/Physics     QGSP_BIC                 << 100 To see the list of available configurations one can use
105                                                << 
106 To see the list of available configurations wi << 
107                                                   101 
108 /testhadr/ListPhysics                             102 /testhadr/ListPhysics
109                                                   103 
110 The cuts for electromagnetic physics can be es << 104 The cuts for electromagnetic phsyics can be established via
111                                                   105 
112 /testhadr/CutsAll       1 mm                      106 /testhadr/CutsAll       1 mm
113 /testhadr/CutsGamma   0.1 mm                      107 /testhadr/CutsGamma   0.1 mm
114 /testhadr/CutsEl      0.2 mm                      108 /testhadr/CutsEl      0.2 mm
115 /testhadr/CutsPos     0.3 mm                      109 /testhadr/CutsPos     0.3 mm
116 /testhadr/CutsProt    0.6 mm                   << 
117                                                << 
118 Note that testhadr UI commands are not availab << 
119 environment variable is defined.               << 
120                                                   110 
121                                                   111 
122                           VISUALIZATION        << 112                           VISUALISATION
123                                                   113 
124 For interactive mode G4 visualization options     114 For interactive mode G4 visualization options and variables should be
125 defined, then the example should be recompiled    115 defined, then the example should be recompiled:
126                                                   116 
127 gmake visclean                                    117 gmake visclean
128 gmake                                             118 gmake
129                                                   119 
                                                   >> 120 The vis.mac file can be used an example of visualization. The following command can 
                                                   >> 121 be used:
                                                   >> 122 
                                                   >> 123 /testhadr/DrawTracks  charged
                                                   >> 124 /testhadr/DrawTracks  charged+n
                                                   >> 125 /testhadr/DrawTracks  neutral
                                                   >> 126 /testhadr/DrawTracks  all
                                                   >> 127 
130                                                   128 
131                           HISTOGRAMS              129                           HISTOGRAMS
132                                                   130 
133 There are built in histograms. The 1st one (id << 131 To use histograms any of implementations of AIDA interfaces should
134 deposition along the target. Histograms "22",  << 132 be available (see http://aida.freehep.org).
135 energy deposition per particle type.           << 133 
136                                                << 134 A package including AIDA and extended interfaces also using Python
137 All other histograms are provided in decimal l << 135 is PI, available from: http://cern.ch/pi .
138 where E is secondary particle energy at produc << 136 
                                                   >> 137 Once installed PI or PI-Lite in a specified local area $PI_DIR, it is
                                                   >> 138 required to add the installation path to $PATH, i.e. for example,
                                                   >> 139 for release 1.2.1 of PI:
                                                   >> 140 
                                                   >> 141 setenv PATH ${PATH}:$PI_DIR/1.3.12/app/releases/PI/PI_1_3_12/slc3_gcc323/bin
                                                   >> 142 
                                                   >> 143 CERN users can use the PATH to the LCG area on AFS.
                                                   >> 144 
                                                   >> 145 Before compilation of the example it is optimal to clean up old 
                                                   >> 146 files:
                                                   >> 147 
                                                   >> 148 gmake histclean
                                                   >> 149 setenv G4ANALYSIS_USE 1
                                                   >> 150 gmake
                                                   >> 151 
                                                   >> 152 Before running the example the command should be issued:
                                                   >> 153 
                                                   >> 154 eval `aida-config --runtime csh`
                                                   >> 155 
                                                   >> 156 It is possible to choose the format of the output file with 
                                                   >> 157 histograms using UI command:
                                                   >> 158 
                                                   >> 159 /testhadr/HistoName   name
                                                   >> 160 /testhadr/HistoType   type
                                                   >> 161 /testhadr/HistoOption "uncompress"
139                                                   162 
140 It is possible to change scale and output file << 163 The following types are available: hbook, root, aida. They will be 
                                                   >> 164 stored in the file "name.hbook", "name.root", or "name.aida". 
                                                   >> 165 If the environment variable HISTODIR is defined, files are stored in this 
                                                   >> 166 subdirectory.
141                                                   167 
142 /testhadr/histo/fileName name                  << 168 To show the contence of a histogram ID=i the commands may be applied:
143 /testhadr/histo/setHisto idx nbins vmin vmax u << 
144                                                   169 
145 Only ROOT histograms are available.            << 170 /testhadr/HistoPrint  i
146                                                   171 
147 All histograms are normalized to the number of << 172 All histograms are normalised to the number of events.