Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 /// \file field/field05/src/F05Field.cc << 27 // 28 /// \brief Implementation of the F05Field clas << 29 // 28 // 30 29 31 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 33 32 34 #include "F05Field.hh" 33 #include "F05Field.hh" 35 34 36 #include "G4SystemOfUnits.hh" << 35 #include "G4FieldManager.hh" >> 36 #include "G4TransportationManager.hh" >> 37 >> 38 #include "G4EqEMFieldWithSpin.hh" >> 39 #include "G4ChordFinder.hh" >> 40 #include "G4PropagatorInField.hh" >> 41 >> 42 #include "G4MagIntegratorStepper.hh" >> 43 #include "G4ClassicalRK4.hh" >> 44 >> 45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 46 >> 47 F05Field::F05Field() : G4ElectroMagneticField() >> 48 { >> 49 fEquation = new G4EqEMFieldWithSpin(this); >> 50 >> 51 G4FieldManager* fieldMgr >> 52 = G4TransportationManager::GetTransportationManager()->GetFieldManager(); >> 53 >> 54 fieldMgr->SetDetectorField(this); >> 55 >> 56 fStepper = new G4ClassicalRK4(fEquation,12); >> 57 >> 58 G4double minStep = 0.01*mm; >> 59 >> 60 fChordFinder = new G4ChordFinder((G4MagneticField*)this,minStep,fStepper); >> 61 >> 62 // Set accuracy parameters >> 63 G4double deltaChord = 3.0*mm; >> 64 fChordFinder->SetDeltaChord( deltaChord ); >> 65 >> 66 G4double deltaOneStep = 0.01*mm; >> 67 fieldMgr->SetAccuraciesWithDeltaOneStep(deltaOneStep); >> 68 >> 69 G4double deltaIntersection = 0.1*mm; >> 70 fieldMgr->SetDeltaIntersection(deltaIntersection); >> 71 >> 72 G4TransportationManager* fTransportManager = >> 73 G4TransportationManager::GetTransportationManager(); >> 74 >> 75 fieldPropagator = fTransportManager->GetPropagatorInField(); >> 76 >> 77 G4double epsMin = 2.5e-7*mm; >> 78 G4double epsMax = 0.05*mm; >> 79 >> 80 fieldPropagator->SetMinimumEpsilonStep(epsMin); >> 81 fieldPropagator->SetMaximumEpsilonStep(epsMax); >> 82 >> 83 fieldMgr->SetChordFinder(fChordFinder); >> 84 } 37 85 38 //....oooOO0OOooo........oooOO0OOooo........oo 86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 39 87 40 void F05Field::GetFieldValue(const G4double Po << 88 F05Field::~F05Field() 41 { 89 { 42 // Point[0],Point[1],Point[2] are x-, y-, z- << 90 if (fEquation) delete fEquation; >> 91 if (fStepper) delete fStepper; >> 92 if (fChordFinder) delete fChordFinder; >> 93 } 43 94 44 const G4double Bz = 0.24 * tesla; << 95 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 45 const G4double Er = 2.113987E+6 * volt / m; << 96 >> 97 void F05Field::GetFieldValue( const G4double Point[3],G4double* Bfield ) const >> 98 { >> 99 // Point[0],Point[1],Point[2] are x-, y-, z-cordinates 46 100 47 G4double Ex, Ey; << 101 const G4double Bz = 0.24*tesla; >> 102 const G4double Er = 2.113987E+6*volt/m; 48 103 49 G4double posR = std::sqrt(std::pow(Point[0], << 104 G4double Ex,Ey; >> 105 >> 106 G4double posR = std::sqrt(std::pow(Point[0],2) + std::pow(Point[1],2)); 50 G4double cos_theta, sin_theta; 107 G4double cos_theta, sin_theta; 51 108 52 if (posR > 0) { << 109 if (posR>0){ 53 cos_theta = Point[0] / (G4double)posR; << 110 cos_theta = Point[0]/(G4double)posR; 54 sin_theta = Point[1] / (G4double)posR; << 111 sin_theta = Point[1]/(G4double)posR; 55 Ex = -1 * Er * cos_theta; // apply radial << 112 Ex = -1*Er*cos_theta;//apply radial electric field 56 Ey = -1 * Er * sin_theta; << 113 Ey = -1*Er*sin_theta; >> 114 }else{ >> 115 Ex=0; >> 116 Ey=0; 57 } 117 } 58 else { << 118 59 Ex = 0; << 119 Bfield[0]=0; 60 Ey = 0; << 120 Bfield[1]=0; 61 } << 121 Bfield[2]=Bz; 62 << 122 63 Bfield[0] = 0; << 123 Bfield[3]=Ex; 64 Bfield[1] = 0; << 124 Bfield[4]=Ey; 65 Bfield[2] = Bz; << 125 Bfield[5]=0; 66 << 67 Bfield[3] = Ex; << 68 Bfield[4] = Ey; << 69 Bfield[5] = 0; << 70 126 71 return; 127 return; 72 } 128 } 73 129