Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/field/field04/README

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/extended/field/field04/README (Version 11.3.0) and /examples/extended/field/field04/README (Version 11.1.3)


  1                                                     1 
  2      =========================================      2      =========================================================
  3      Geant4 - an Object-Oriented Toolkit for S      3      Geant4 - an Object-Oriented Toolkit for Simulation in HEP
  4      =========================================      4      =========================================================
  5                                                     5 
  6                                                     6 
  7                                                     7 
  8                             field04 Example         8                             field04 Example
  9                             ---------------         9                             ---------------
 10                                                    10 
 11      This example shows how to define/use OVER <<  11      This example shows how to define/use OVERLAPPING field elements 
 12      in Geant4. Fields might be either magneti     12      in Geant4. Fields might be either magnetic, electric or both.
 13                                                    13 
 14      Credit goes to Tom Roberts and Muons Inc.     14      Credit goes to Tom Roberts and Muons Inc. since much of the code
 15      and ideas were taken at liberty from the  <<  15      and ideas were taken at liberty from the (GNU GPL) source of 
 16      G4BEAMLINE release 1.12.                      16      G4BEAMLINE release 1.12.
 17                                                    17 
 18      http://g4beamline.muonsinc.com                18      http://g4beamline.muonsinc.com
 19                                                    19 
 20 **************                                     20 **************
 21 *Classes Used*                                     21 *Classes Used*
 22 **************                                     22 **************
 23                                                    23 
 24  1 - main()                                        24  1 - main()
 25                                                    25 
 26  See field04.cc.                                   26  See field04.cc.
 27                                                <<  27  
 28         The example can be run with the follow     28         The example can be run with the following optional arguments:
 29                                                    29 
 30         % field04 [-m macro ] [-p physicsList] <<  30         % field04 [-m macro ] [-p physicsList] [-r randomSeed] [-s preinit|idle]   
 31                                                    31 
 32         If a macro is provided with the option     32         If a macro is provided with the option "-m", the program runs in a batch mode,
 33         otherwise the program open the interac     33         otherwise the program open the interactive session after executing the
 34         default initialization macro init_vis.     34         default initialization macro init_vis.mac. The option "-s preinit" can be used
 35         to start the program without initializ     35         to start the program without initialization in PreInit phase.
 36                                                    36 
 37         For example:                               37         For example:
 38         to assign the F04PhysicsList:          <<  38         to assign the F04PhysicsList: 
 39         % field04 -p QGSP_BERT                     39         % field04 -p QGSP_BERT
 40                                                    40 
 41         an initial random number seed with:        41         an initial random number seed with:
 42         % field04 field04.in -r 12345              42         % field04 field04.in -r 12345
 43                                                    43 
 44         to start with a macro file and an init     44         to start with a macro file and an initial seed:
 45         % field04 -m field04.in -r 12345           45         % field04 -m field04.in -r 12345
 46                                                    46 
 47                                                    47 
 48  2- GEOMETRY DEFINITION                            48  2- GEOMETRY DEFINITION
 49                                                    49 
 50         The geometry consists of two solenoida     50         The geometry consists of two solenoidal magnets: a "CaptureMgnt"
 51         followed by a (blue-colored "TransferM     51         followed by a (blue-colored "TransferMgnt". By definition, the
 52         axis and center of the "CaptureMgnt" c     52         axis and center of the "CaptureMgnt" coincide with the "World". The
 53         position of the "TransferMgnt" relativ     53         position of the "TransferMgnt" relative to the downstream end of the
 54         "CaptureMgnt", as well as its axis ang     54         "CaptureMgnt", as well as its axis angle, both may vary. A cylindrical
 55         "Target" is positioned inside the "Cap     55         "Target" is positioned inside the "CaptureMgnt". Its axis can vary
 56         from 0 to 180 deg, and hence also the      56         from 0 to 180 deg, and hence also the direction of the incoming
 57         proton beam wrt the "CaptureMgnt"'s ax     57         proton beam wrt the "CaptureMgnt"'s axis. A "Degrader" is located
 58         inside the "TransferMgnt", its default     58         inside the "TransferMgnt", its default position being at the
 59         upstream end of the "TransferMgnt". Fi     59         upstream end of the "TransferMgnt". Finally, also a "TestPlane" is
 60         located inside the "TransferMgnt", by      60         located inside the "TransferMgnt", by default at its downstream end.
 61                                                    61 
 62                                                    62 
 63         The "World" consists of a solid cylind     63         The "World" consists of a solid cylinder made of a given material.
 64           (It is the responsibility of the use     64           (It is the responsibility of the user to make the world
 65            large enough to contain the rest of     65            large enough to contain the rest of the geometry!)
 66                                                    66 
 67         Three parameters define the world :        67         Three parameters define the world :
 68         - the material of the world,               68         - the material of the world,
 69         - the world radius,                        69         - the world radius,
 70         - the world length.                        70         - the world length.
 71                                                    71 
 72         Example (default values):                  72         Example (default values):
 73         /field04/SetWorldMat G4_AIR                73         /field04/SetWorldMat G4_AIR
 74         /field04/SetWorldR  5.0 m                  74         /field04/SetWorldR  5.0 m
 75         /field04/SetWorldZ 50.0 m                  75         /field04/SetWorldZ 50.0 m
 76                                                    76 
 77                                                    77 
 78         The "Target" is a solid cylinder made      78         The "Target" is a solid cylinder made of a given material.
 79                                                    79 
 80         Five parameters define the target:         80         Five parameters define the target:
 81         - the material of the target,              81         - the material of the target,
 82         - the target radius,                       82         - the target radius,
 83         - the target thickness,                    83         - the target thickness,
 84         - the target position inside the "Capt     84         - the target position inside the "CaptureMgnt",
 85         - the target axis angle relative to th     85         - the target axis angle relative to that of the "CaptureMgnt".
 86                                                    86 
 87         Example (default values):                  87         Example (default values):
 88         /field04/SetTgtMat G4_W                    88         /field04/SetTgtMat G4_W
 89         /field04/SetTgtRad    0.4 cm               89         /field04/SetTgtRad    0.4 cm
 90         /field04/SetTgtThick 16.0 cm               90         /field04/SetTgtThick 16.0 cm
 91         /field04/SetTgtPos 0.0 cm                  91         /field04/SetTgtPos 0.0 cm
 92         /field04/SetTgtAng 170                     92         /field04/SetTgtAng 170
 93                                                    93 
 94                                                    94 
 95         The "Degrader" is a solid cylinder  ma     95         The "Degrader" is a solid cylinder  made of a given material.
 96                                                    96 
 97         Four parameters define the degrader:       97         Four parameters define the degrader:
 98         - the material of the degrader,            98         - the material of the degrader,
 99         - the degrader radius,                     99         - the degrader radius,
100         - the degrader thickness,                 100         - the degrader thickness,
101         - the degrader position relative to th    101         - the degrader position relative to the "TransferMgnt" center.
102                                                   102 
103         Example (default values):                 103         Example (default values):
104         /field04/SetDgrMat G4_Pb                  104         /field04/SetDgrMat G4_Pb
105         /field04/SetDgrRad  30.0 cm               105         /field04/SetDgrRad  30.0 cm
106         /field04/SetDgrThick 0.1 cm               106         /field04/SetDgrThick 0.1 cm
107         #/field04/SetDgrPos -7.4 m                107         #/field04/SetDgrPos -7.4 m
108                                                   108 
109                                                   109 
110         The "CaptureMgnt" is a solenoid (vacuu    110         The "CaptureMgnt" is a solenoid (vacuum cylinder). It is either
111         a two-sided or a one-sided magnetic bo    111         a two-sided or a one-sided magnetic bottle with the B field
112         varying linearly from the center value    112         varying linearly from the center value B1 to the edge value B2.
113         The one-sided F04FocusSolenoid has the    113         The one-sided F04FocusSolenoid has the open end at +z and focuses
114         on the z < 0 side.                        114         on the z < 0 side.
115                                                   115 
116         Four parameters define the "CaptureMgn    116         Four parameters define the "CaptureMgnt":
117         - the magnet radius,                      117         - the magnet radius,
118         - the magnet length,                      118         - the magnet length,
119         - the weaker magnetic field at the cen    119         - the weaker magnetic field at the center B1
120         - the stronger magnetic field at the e    120         - the stronger magnetic field at the edge B2
121                                                   121 
122         Example (default values):                 122         Example (default values):
123         /field04/SetCaptureR 0.6 m             << 123         /field04/SetCaptureR 0.6 m 
124         /field04/SetCaptureZ 4.0 m                124         /field04/SetCaptureZ 4.0 m
125         /field/SetCaptureB1 2.5 tesla          << 125         /field/SetCaptureB1 2.5 tesla 
126         /field/SetCaptureB2 5.0 tesla             126         /field/SetCaptureB2 5.0 tesla
127                                                   127 
128                                                   128 
129         The "TransferMgnt" is a solenoid (vacu << 129         The "TransferMgnt" is a solenoid (vacuum cylinder) with a 
130         constant B-field. When the "TransferMg    130         constant B-field. When the "TransferMgnt" follows immediately
131         the "CaptureMgnt", its relative positi    131         the "CaptureMgnt", its relative position is at 0 cm.
132                                                   132 
133         Four parameters define the "TransferMg    133         Four parameters define the "TransferMgnt":
134         - the magnet radius,                      134         - the magnet radius,
135         - the magnet length,                      135         - the magnet length,
136         - the magnet field,                       136         - the magnet field,
137         - the magnet relative position            137         - the magnet relative position
138           (its upstream face wrt the downstrea    138           (its upstream face wrt the downstream face of the "CaptureMgnt".)
139                                                   139 
140         Example (default values):                 140         Example (default values):
141         /field04/SetTransferR  0.3 m              141         /field04/SetTransferR  0.3 m
142         /field04/SetTransferZ 15.0 m              142         /field04/SetTransferZ 15.0 m
143         /field/SetTransferB 5.0 tesla             143         /field/SetTransferB 5.0 tesla
144         /field04/SetTransferP 0.0 m               144         /field04/SetTransferP 0.0 m
145                                                   145 
146         The default geometry is constructed in    146         The default geometry is constructed in F04DetectorConstruction class,
147         but all the parameters can be changed  << 147         but all the parameters can be changed via the commands defined in 
148         the F04DetectorMessenger class.           148         the F04DetectorMessenger class.
149                                                   149 
150                                                   150 
151  3- MATERIAL DEFINITION                           151  3- MATERIAL DEFINITION
152                                                   152 
153         Material definitions are done through     153         Material definitions are done through the singleton class F04Materials
154         which keeps a pointer to the G4NistMan    154         which keeps a pointer to the G4NistManager. It has a method
155         GetMaterial by name (G4String) which i    155         GetMaterial by name (G4String) which in turn invokes the
156         G4NistManager::FindOrBuildMaterial, an    156         G4NistManager::FindOrBuildMaterial, and/or G4Material::GetMaterial
157         methods. It has also a method CreateMa    157         methods. It has also a method CreateMaterials which, for materials
158         absent from the NIST data base, shows     158         absent from the NIST data base, shows how to create them using the
159         G4NistManager::ConstructNewMaterial me    159         G4NistManager::ConstructNewMaterial method.
160                                                   160 
161                                                   161 
162  4- AN EVENT: THE PRIMARY GENERATOR               162  4- AN EVENT: THE PRIMARY GENERATOR
163                                                   163 
164         The primary kinematic consists of a si    164         The primary kinematic consists of a single particle which hits the
165         target perpendicular to its upstream f    165         target perpendicular to its upstream face. The type of the particle
166         and its energy are set in the F04Prima    166         and its energy are set in the F04PrimaryGeneratorAction class, and can
167         be changed via the G4 build-in command    167         be changed via the G4 build-in commands of the G4ParticleGun class.
168         In addition, there is a fRndmFlag, whi    168         In addition, there is a fRndmFlag, which once set allows the beam to
169         explore randomly the whole cross secti    169         explore randomly the whole cross section of the target. The default
170         beam consists of 500 MeV protons, star    170         beam consists of 500 MeV protons, starting at the upstream face of
171         the target, directed along dx = dy = 0    171         the target, directed along dx = dy = 0, dz = 1 wrt the target frame.
172         The default direction should NOT be ch    172         The default direction should NOT be changed! The arguments of the
173         x/y/zvertex commands are relative to t    173         x/y/zvertex commands are relative to the target center.
174                                                   174 
175         Example:                                  175         Example:
176         /gun/random on                            176         /gun/random on
177         #/gun/xvertex 0 mm                        177         #/gun/xvertex 0 mm
178         #/gun/yvertex 0 mm                        178         #/gun/yvertex 0 mm
179         #/gun/zvertex -100 mm                     179         #/gun/zvertex -100 mm
180                                                   180 
181                                                   181 
182  5- DETECTOR RESPONSE                             182  5- DETECTOR RESPONSE
183                                                   183 
184         Information is extracted from the prog    184         Information is extracted from the program via F04SteppingAction
185         at the TestPlane.                         185         at the TestPlane.
186                                                   186 
187                                                   187 
188  6- PHYSICS                                    << 188  6- PHYSICS 
189                                                   189 
190         The F04PhysicsList extends a selected     190         The F04PhysicsList extends a selected Geant4 physics list.
191         The base physics list name is provided << 191         The base physics list name is provided by its name in the F04PhysicsList 
192         constructor.                              192         constructor.
193                                                   193 
194         In addition to processes defined in th << 194         In addition to processes defined in the base Geant4 physics list, 
195         there is added the F04StepMax process  << 195         there is added the F04StepMax process and the decay of pions can be assigned 
196         via dedicated commands in F04PhysicsLi    196         via dedicated commands in F04PhysicsListMessenger.
197                                                   197 
198         The command to define maximum step:       198         The command to define maximum step:
199         /exp/phys/stepMax value unit              199         /exp/phys/stepMax value unit
200                                                   200 
201         The decay of pions can be assigned via    201         The decay of pions can be assigned via (pi -> e nu, pi -> mu nu):
202                                                   202 
203         /decay/pienu                              203         /decay/pienu
204         /decay/pimunu                             204         /decay/pimunu
205                                                   205 
206         The pienu assignment includes a small     206         The pienu assignment includes a small fraction of radiative decay:
207         e nu gamma (G4PionRadiativeDecayChanne    207         e nu gamma (G4PionRadiativeDecayChannel).
208                                                   208 
209         The standard/default muon decay chain     209         The standard/default muon decay chain is modified to be 98.6%
210         G4MuonDecayChannelWithSpin and 1.4% G4    210         G4MuonDecayChannelWithSpin and 1.4% G4MuonRadiativeDecayChannelWithSpin
211         in ConstructParticle().                   211         in ConstructParticle().
212                                                   212 
213         The pion decay process G4PolDecay inhe    213         The pion decay process G4PolDecay inherits from G4Decay and implements
214         the virtual method - empty in the base    214         the virtual method - empty in the base class - DaughterPolarization
215                                                   215 
216         The muon decay process is G4DecayWithS    216         The muon decay process is G4DecayWithSpin
217                                                   217 
218         Furthermore, the following commands ar    218         Furthermore, the following commands are also available, but
219         may only be used AFTER /run/initialize    219         may only be used AFTER /run/initialize
220                                                   220 
221         /process/inactivate msc                   221         /process/inactivate msc
222         /process/activate msc                     222         /process/activate msc
223                                                   223 
224  7- Overlapping Fields                            224  7- Overlapping Fields
225                                                   225 
226         The F04GlobalField (a singleton) is in << 226         The F04GlobalField (a singleton) is instantiated in 
227         F04DetectorConstruction() and assigned << 227         F04DetectorConstruction() and assigned to the global field manager 
228         in UpdateField():                         228         in UpdateField():
229                                                   229 
230         fFieldManager = GetGlobalFieldManager(    230         fFieldManager = GetGlobalFieldManager();
231         fFieldManager->SetDetectorField(this);    231         fFieldManager->SetDetectorField(this);
232                                                   232 
233         The F04GlobalField has a std::vector<E    233         The F04GlobalField has a std::vector<ElementField*> FieldList
234                                                   234 
235         The field from each individual beamlin    235         The field from each individual beamline element is given by a
236         F04ElementField object. Any number of     236         F04ElementField object. Any number of overlapping F04ElementField
237         objects can be added to the F04GlobalF    237         objects can be added to the F04GlobalField. Any element that
238         represents an element with an EM field    238         represents an element with an EM field must add the appropriate
239         F04ElementField to the global F04Globa    239         F04ElementField to the global F04GlobalField object.
240                                                   240 
241         Of course, the F04GlobalField has the     241         Of course, the F04GlobalField has the method GetFieldValue implemented.
242                                                   242 
243         Before /run/initialize in the macro fi    243         Before /run/initialize in the macro file or command, the update
244         field command must have been issued if    244         field command must have been issued if any of the other following
245         field commands was employed:              245         field commands was employed:
246                                                   246 
247         /field/update                             247         /field/update
248                                                   248 
249         Other options are:                        249         Other options are:
250                                                   250 
251         /field/setStepperType 4                   251         /field/setStepperType 4
252         /field/setMinStep 10 mm                   252         /field/setMinStep 10 mm
253         /field/setDeltaChord 3.0 mm               253         /field/setDeltaChord 3.0 mm
254         /field/setDeltaOneStep 0.01 mm            254         /field/setDeltaOneStep 0.01 mm
255         /field/setDeltaIntersection 0.1 mm        255         /field/setDeltaIntersection 0.1 mm
256         /field/setEpsMin 2.5e-7 mm                256         /field/setEpsMin 2.5e-7 mm
257         /field/setEpsMax 0.05 mm                  257         /field/setEpsMax 0.05 mm
258                                                << 258         
259         Each field element has a rectilinear b    259         Each field element has a rectilinear bounding box in global
260         coordinate space which is checked befo    260         coordinate space which is checked before a point is verified to
261         actually be inside the F04ElementField    261         actually be inside the F04ElementField (IsWithin and IsOutside).
262         SetGlobalPoint is called 8 times for t    262         SetGlobalPoint is called 8 times for the corners of the local
263         bounding box, after a local->global co    263         bounding box, after a local->global coordinate transform.
264                                                   264 
265         The F04ElementField is the interface c << 265         The F04ElementField is the interface class used by F04GlobalField to 
266         compute the field value at a given poi    266         compute the field value at a given point[].
267                                                   267 
268         A beamline element, for example the F0    268         A beamline element, for example the F04SimpleSolenoid, will derive
269         from F04ElementField and implement the    269         from F04ElementField and implement the computation for the element.
270                                                   270 
271         simpleSolenoid                         << 271         simpleSolenoid 
272           = new F04SimpleSolenoid(B, l, logicT    272           = new F04SimpleSolenoid(B, l, logicTransferMgnt,TransferMgntCenter);
273                                                   273 
274         Besides the magnetic field and the len    274         Besides the magnetic field and the length of the simple solenoid,
275         the constructor needs the knowledge of    275         the constructor needs the knowledge of the G4LogicalVolume for
276         the beamline element and where its cen    276         the beamline element and where its center is located in the
277         'World'.                                  277         'World'.
278                                                   278 
279         The F04ElementField has a G4AffineTran    279         The F04ElementField has a G4AffineTransform "fGlobal2local" which
280         allows the quick computation of coordi    280         allows the quick computation of coordinate transformations. It can
281         only be determined by knowing the elem    281         only be determined by knowing the element's coordinate origin in
282         the global frame and after all of the     282         the global frame and after all of the geometry has been defined.
283         For this reason, the object is prepare    283         For this reason, the object is prepared in two stages, through the
284         constructor providing it with the coor    284         constructor providing it with the coordinate center and a pointer
285         to the G4LogicalVolume. Later the Cons    285         to the G4LogicalVolume. Later the Construct() method is called to
286         calculate the fGlobal2local and the bo    286         calculate the fGlobal2local and the bounding box. This can be done
287         from the F04RunAction::BeginOfRunActio    287         from the F04RunAction::BeginOfRunAction method, for only then are we
288         certain that the geometry has been com    288         certain that the geometry has been completely built:
289                                                   289 
290         FieldList* fields = F04GlobalField::Ge    290         FieldList* fields = F04GlobalField::GetObject()->GetFields();
291                                                   291 
292         if (fields) {                             292         if (fields) {
293            if (fields->size()>0) {                293            if (fields->size()>0) {
294               FieldList::iterator i;              294               FieldList::iterator i;
295               for (i=fields->begin(); i!=field    295               for (i=fields->begin(); i!=fields->end(); ++i)(*i)->Construct();
296            }                                      296            }
297         }                                         297         }
298                                                   298 
299         The F04ElementField constructor will a    299         The F04ElementField constructor will also add the derived object into
300         F04GlobalField. Finally, its AddFieldV    300         F04GlobalField. Finally, its AddFieldValue() will add the field value
301         for this element to field[].           << 301         for this element to field[]. 
302                                                   302 
303                                                   303 
304  8- User Action Classes                           304  8- User Action Classes
305                                                   305 
306         F04RunActionMessenger:                    306         F04RunActionMessenger:
307                                                   307 
308                      /rndm/save freq - to save    308                      /rndm/save freq - to save rndm status in external files
309                                  0 not saved      309                                  0 not saved
310                                 >0 saved on: b    310                                 >0 saved on: beginOfRun.rndm
311                                  1 saved on:      311                                  1 saved on:   endOfRun.rndm
312                                  2 saved on: e    312                                  2 saved on: endOfEvent.rndm
313                      /rndm/read random/run0evt    313                      /rndm/read random/run0evt8268.rndm
314                                                   314 
315         F04RunAction:                          << 315         F04RunAction:  
316                      BeginOfRunAction: Deal wi    316                      BeginOfRunAction: Deal with random number storage,
317                      initialization etc. Call     317                      initialization etc. Call the Construct() method of
318                      F04ElementFields in the F    318                      F04ElementFields in the FieldList of F04GlobalField object.
319                      EndOfRunAction: random nu    319                      EndOfRunAction: random number storage/status printing.
320                                                   320 
321         F04EventActionMessenger:                  321         F04EventActionMessenger:
322                      /event/setverbose            322                      /event/setverbose
323                                                   323 
324         F04EventAction(RunAction* RA):            324         F04EventAction(RunAction* RA):
325                      Customized BeginOfEvent p    325                      Customized BeginOfEvent printing
326                      EndofEvent:                  326                      EndofEvent:
327                      saveEngingStatus and show    327                      saveEngingStatus and showEngineStatus according to flag
328                      in F04RunAction              328                      in F04RunAction
329                                                   329 
330         F04TrackingAction:                        330         F04TrackingAction:
331                      PreUserTrackingAction: In    331                      PreUserTrackingAction: Instantiate F04UserTrackInformation
332                      and set the application T    332                      and set the application TrackStatus.
333                      PostUserTrackingAction: R    333                      PostUserTrackingAction: Retreive F04UserTrackInformation
334                      and decide to save random    334                      and decide to save random number status accordingly.
335                                                   335 
336         F04SteppingActionMessenger:               336         F04SteppingActionMessenger:
337                                                   337 
338         F04SteppingAction:                        338         F04SteppingAction:
339                      UserSteppingAction: Kill     339                      UserSteppingAction: Kill primary if/when outside Target
340                      volume. Diagnostic/histog    340                      volume. Diagnostic/histogram filling for particles at a
341                      TestPlane. Find decay pos    341                      TestPlane. Find decay position and when particle
342                      FIRST reverses z-momentum    342                      FIRST reverses z-momentum component via using a
343                      F04UserTrackInformation o    343                      F04UserTrackInformation object.
344                                                   344 
345         F04StackingAction:                        345         F04StackingAction:
346                      Track only primaries, pi+    346                      Track only primaries, pi+ or mu+
347                                                   347 
348         F04UserTrackInformation:                  348         F04UserTrackInformation:
349                      Keep an application F04Tr    349                      Keep an application F04TrackStatus for the track:
350                           undefined, left, rig    350                           undefined, left, right, reverse
351                                                   351 
352         F04SteppingVerbose:                       352         F04SteppingVerbose:
353                     Only print track header an    353                     Only print track header and step information for
354                     pi+ and mu+.               << 354                     pi+ and mu+. 
355                     Note: the information for     355                     Note: the information for primary protons is not printed.
356                                                   356 
357         F04Trajectory, TrajectoryPoint:           357         F04Trajectory, TrajectoryPoint:
358                     Example of application spe    358                     Example of application specific implementations
359                                                   359 
360  9- HOW TO START ?                                360  9- HOW TO START ?
361                                                   361 
362         - Execute field04 in 'batch' mode from    362         - Execute field04 in 'batch' mode from macro files e.g.
363                 % field04 -m field04.in           363                 % field04 -m field04.in
364                                                   364 
365         - Execute field04 in 'interactive' mod    365         - Execute field04 in 'interactive' mode with visualization
366                 % field04                         366                 % field04
367                 ....                              367                 ....
368                 Idle> type your commands          368                 Idle> type your commands
369                 ....                              369                 ....
370                                                   370 
371         - Execute field04 in 'interactive' mod    371         - Execute field04 in 'interactive' mode without initialization
372                 % field04 -s preinit              372                 % field04 -s preinit
373                 ....                              373                 ....
374                 Idle> type your commands, then    374                 Idle> type your commands, then
375                 Idle> /run/initialize             375                 Idle> /run/initialize
376                 Idle> /control/execute vis.mac    376                 Idle> /control/execute vis.mac
377                 ....                              377                 ....