Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // ------------------------------------------- 27 // ------------------------------------------------------------------- 28 // 28 // 29 // 21.03.17 V. Grichine based on G4hBremsstrah 29 // 21.03.17 V. Grichine based on G4hBremsstrahlungModel 30 // 30 // 31 // Class Description: 31 // Class Description: 32 // 32 // 33 // Implementation of energy loss for LDMPhoton 33 // Implementation of energy loss for LDMPhoton emission by hadrons 34 // 34 // 35 35 36 //....oooOO0OOooo........oooOO0OOooo........oo 36 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 37 37 38 #include "G4LDMBremModel.hh" 38 #include "G4LDMBremModel.hh" 39 << 40 #include "TestParameters.hh" << 41 << 42 #include "G4LDMPhoton.hh" << 43 #include "G4Log.hh" << 44 #include "G4ParticleChangeForLoss.hh" << 45 #include "G4PhysicalConstants.hh" 39 #include "G4PhysicalConstants.hh" 46 #include "G4SystemOfUnits.hh" 40 #include "G4SystemOfUnits.hh" >> 41 #include "G4Log.hh" >> 42 #include "G4LDMPhoton.hh" >> 43 #include "G4ParticleChangeForLoss.hh" >> 44 #include "TestParameters.hh" 47 45 48 //....oooOO0OOooo........oooOO0OOooo........oo 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 49 47 50 using namespace std; 48 using namespace std; 51 49 52 G4LDMBremModel::G4LDMBremModel(const G4Particl << 50 G4LDMBremModel::G4LDMBremModel(const G4ParticleDefinition* p, >> 51 const G4String& nam) 53 : G4MuBremsstrahlungModel(p, nam) 52 : G4MuBremsstrahlungModel(p, nam) 54 { 53 { 55 fEpsilon = TestParameters::GetPointer()->Get 54 fEpsilon = TestParameters::GetPointer()->GetAlphaFactor(); 56 theLDMPhoton = G4LDMPhoton::LDMPhoton(); 55 theLDMPhoton = G4LDMPhoton::LDMPhoton(); 57 fLDMPhotonMass = theLDMPhoton->GetPDGMass(); 56 fLDMPhotonMass = theLDMPhoton->GetPDGMass(); 58 minThreshold = 1.2 * fLDMPhotonMass; << 57 minThreshold = 1.2*fLDMPhotonMass; 59 } 58 } 60 59 61 //....oooOO0OOooo........oooOO0OOooo........oo 60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 62 61 63 G4LDMBremModel::~G4LDMBremModel() {} << 62 G4LDMBremModel::~G4LDMBremModel() >> 63 {} 64 64 65 //....oooOO0OOooo........oooOO0OOooo........oo 65 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 66 66 67 G4double G4LDMBremModel::ComputeDEDXPerVolume( << 67 G4double G4LDMBremModel::ComputeDEDXPerVolume(const G4Material*, >> 68 const G4ParticleDefinition*, 68 69 G4double, G4double) 69 { 70 { 70 return 0.0; 71 return 0.0; 71 } 72 } 72 73 73 //....oooOO0OOooo........oooOO0OOooo........oo 74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 74 75 75 G4double G4LDMBremModel::ComputeDMicroscopicCr << 76 G4double G4LDMBremModel::ComputeDMicroscopicCrossSection( 76 << 77 G4double tkin, >> 78 G4double Z, >> 79 G4double gammaEnergy) 77 // differential cross section 80 // differential cross section 78 { 81 { 79 G4double dxsection = 0.; 82 G4double dxsection = 0.; 80 83 81 if (gammaEnergy > tkin || tkin < minThreshol << 84 if( gammaEnergy > tkin || tkin < minThreshold) return dxsection; 82 /* 85 /* 83 G4cout << "G4LDMBremModel m= " << mass << 86 G4cout << "G4LDMBremModel m= " << mass 84 << " " << particle->GetParticleName( << 87 << " " << particle->GetParticleName() 85 << " Egamma(GeV)= " << gammaEnergy/G << 88 << " Egamma(GeV)= " << gammaEnergy/GeV 86 << " Ekin(GeV)= " << tkin/GeV << G4e 89 << " Ekin(GeV)= " << tkin/GeV << G4endl; 87 */ 90 */ 88 G4double E = tkin + mass; << 91 G4double E = tkin + mass ; 89 G4double v = gammaEnergy / E; << 92 G4double v = gammaEnergy/E ; 90 G4double delta = 0.5 * mass * mass * v / (E << 93 G4double delta = 0.5*mass*mass*v/(E-gammaEnergy) ; 91 G4double rab0 = delta * sqrte; << 94 G4double rab0=delta*sqrte ; 92 95 93 G4int iz = std::max(1, std::min(G4lrint(Z), << 96 G4int iz = std::max(1,std::min(G4lrint(Z),99)); 94 97 95 G4double z13 = 1.0 / nist->GetZ13(iz); << 98 G4double z13 = 1.0/nist->GetZ13(iz); 96 G4double dn = mass * nist->GetA27(iz) / (70. << 99 G4double dn = mass*nist->GetA27(iz)/(70.*MeV); 97 100 98 G4double b = btf; << 101 G4double b = btf; 99 if (1 == iz) b = bh; << 102 if(1 == iz) b = bh; 100 103 101 // nucleus contribution logarithm 104 // nucleus contribution logarithm 102 G4double rab1 = b * z13; << 105 G4double rab1=b*z13; 103 G4double fn = << 106 G4double fn=G4Log(rab1/(dn*(electron_mass_c2+rab0*rab1))* 104 G4Log(rab1 / (dn * (electron_mass_c2 + rab << 107 (mass+delta*(dn*sqrte-2.))) ; 105 if (fn < 0.) fn = 0.; << 108 if(fn <0.) fn = 0. ; 106 109 107 G4double x = 1.0 - v; 110 G4double x = 1.0 - v; 108 111 109 if (particle->GetPDGSpin() != 0) { << 112 if(particle->GetPDGSpin() != 0) { x += 0.75*v*v; } 110 x += 0.75 * v * v; << 111 } << 112 113 113 dxsection = coeff * x * Z * Z * fn / gammaEn << 114 dxsection = coeff*x*Z*Z*fn/gammaEnergy; 114 return dxsection; 115 return dxsection; 115 } 116 } 116 117 117 //....oooOO0OOooo........oooOO0OOooo........oo 118 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 118 119 119 G4double G4LDMBremModel::ComputeCrossSectionPe << 120 G4double G4LDMBremModel::ComputeCrossSectionPerAtom( 120 << 121 const G4ParticleDefinition*, 121 << 122 G4double kineticEnergy, >> 123 G4double Z, G4double, >> 124 G4double cutEnergy, >> 125 G4double maxEnergy) 122 { 126 { 123 G4double cross = 0.0; 127 G4double cross = 0.0; 124 << 128 125 if (kineticEnergy <= lowestKinEnergy) return 129 if (kineticEnergy <= lowestKinEnergy) return cross; 126 130 127 G4double tmax = std::min(maxEnergy, kineticE 131 G4double tmax = std::min(maxEnergy, kineticEnergy); 128 G4double cut = std::min(cutEnergy, kineticEn << 132 G4double cut = std::min(cutEnergy, kineticEnergy); 129 << 133 130 cut = std::max(cut, minThreshold); 134 cut = std::max(cut, minThreshold); 131 if (cut >= tmax) return cross; 135 if (cut >= tmax) return cross; 132 136 133 cross = ComputeMicroscopicCrossSection(kinet << 137 cross = ComputeMicroscopicCrossSection (kineticEnergy, Z, cut); 134 138 135 if (tmax < kineticEnergy) { << 139 if(tmax < kineticEnergy) >> 140 { 136 cross -= ComputeMicroscopicCrossSection(ki 141 cross -= ComputeMicroscopicCrossSection(kineticEnergy, Z, tmax); 137 } 142 } 138 cross *= fEpsilon * fEpsilon; << 143 cross *= fEpsilon*fEpsilon; 139 144 140 return cross; 145 return cross; 141 } 146 } 142 147 143 //....oooOO0OOooo........oooOO0OOooo........oo 148 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 144 149 145 void G4LDMBremModel::SampleSecondaries(std::ve << 150 void G4LDMBremModel::SampleSecondaries( 146 const G << 151 std::vector<G4DynamicParticle*>* vdp, 147 const G << 152 const G4MaterialCutsCouple* couple, 148 G4doubl << 153 const G4DynamicParticle* dp, >> 154 G4double minEnergy, >> 155 G4double maxEnergy) 149 { 156 { 150 G4double kineticEnergy = dp->GetKineticEnerg 157 G4double kineticEnergy = dp->GetKineticEnergy(); 151 // check against insufficient energy 158 // check against insufficient energy 152 G4double tmax = std::min(kineticEnergy, maxE 159 G4double tmax = std::min(kineticEnergy, maxEnergy); 153 G4double tmin = std::min(kineticEnergy, minE 160 G4double tmin = std::min(kineticEnergy, minEnergy); 154 tmin = std::max(tmin, minThreshold); 161 tmin = std::max(tmin, minThreshold); 155 if (tmin >= tmax) return; << 162 if(tmin >= tmax) return; 156 163 157 // ===== sampling of energy transfer ====== 164 // ===== sampling of energy transfer ====== 158 165 159 G4ParticleMomentum partDirection = dp->GetMo 166 G4ParticleMomentum partDirection = dp->GetMomentumDirection(); 160 167 161 // select randomly one element constituing t 168 // select randomly one element constituing the material 162 const G4Element* anElement = SelectRandomAto << 169 const G4Element* anElement = SelectRandomAtom(couple,particle,kineticEnergy); 163 G4double Z = anElement->GetZ(); 170 G4double Z = anElement->GetZ(); 164 171 165 G4double totalEnergy = kineticEnergy + mass; << 172 G4double totalEnergy = kineticEnergy + mass; 166 G4double totalMomentum = sqrt(kineticEnergy << 173 G4double totalMomentum = sqrt(kineticEnergy*(kineticEnergy + 2.0*mass)); 167 174 168 G4double func1 = tmin * ComputeDMicroscopicC << 175 G4double func1 = tmin* >> 176 ComputeDMicroscopicCrossSection(kineticEnergy,Z,tmin); 169 177 170 G4double lnepksi, epksi; 178 G4double lnepksi, epksi; 171 G4double func2; 179 G4double func2; 172 180 173 G4double xmin = G4Log(tmin / MeV); << 181 G4double xmin = G4Log(tmin/MeV); 174 G4double xmax = G4Log(tmax / tmin); << 182 G4double xmax = G4Log(tmax/tmin); 175 183 176 do { << 184 do 177 lnepksi = xmin + G4UniformRand() * xmax; << 185 { 178 epksi = MeV * G4Exp(lnepksi); << 186 lnepksi = xmin + G4UniformRand()*xmax; 179 func2 = epksi * ComputeDMicroscopicCrossSe << 187 epksi = MeV*G4Exp(lnepksi); >> 188 func2 = epksi*ComputeDMicroscopicCrossSection(kineticEnergy,Z,epksi); 180 189 181 // Loop checking, 03-Aug-2015, Vladimir Iv 190 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko 182 } while (func2 < func1 * G4UniformRand()); << 191 } while(func2 < func1*G4UniformRand()); 183 192 184 G4double gEnergy = std::max(epksi, fLDMPhoto 193 G4double gEnergy = std::max(epksi, fLDMPhotonMass); 185 G4double gMomentum = std::sqrt((epksi - fLDM << 194 G4double gMomentum = >> 195 std::sqrt((epksi - fLDMPhotonMass)*(epksi + fLDMPhotonMass)); 186 196 187 // ===== sample angle ===== 197 // ===== sample angle ===== 188 198 189 G4double gam = totalEnergy / mass; << 199 G4double gam = totalEnergy/mass; 190 G4double rmax = gam * std::min(1.0, totalEne << 200 G4double rmax = gam*std::min(1.0, totalEnergy/gEnergy - 1.0); 191 G4double rmax2 = rmax * rmax; << 201 G4double rmax2= rmax*rmax; 192 G4double x = G4UniformRand() * rmax2 / (1.0 << 202 G4double x = G4UniformRand()*rmax2/(1.0 + rmax2); 193 << 203 194 G4double theta = std::sqrt(x / (1.0 - x)) / << 204 G4double theta = std::sqrt(x/(1.0 - x))/gam; 195 G4double sint = std::sin(theta); << 205 G4double sint = std::sin(theta); 196 G4double phi = twopi * G4UniformRand(); << 206 G4double phi = twopi * G4UniformRand() ; 197 G4double dirx = sint * cos(phi), diry = sint << 207 G4double dirx = sint*cos(phi), diry = sint*sin(phi), dirz = cos(theta) ; 198 208 199 G4ThreeVector gDirection(dirx, diry, dirz); 209 G4ThreeVector gDirection(dirx, diry, dirz); 200 gDirection.rotateUz(partDirection); 210 gDirection.rotateUz(partDirection); 201 211 202 partDirection *= totalMomentum; 212 partDirection *= totalMomentum; 203 partDirection -= gMomentum * gDirection; << 213 partDirection -= gMomentum*gDirection; 204 partDirection = partDirection.unit(); 214 partDirection = partDirection.unit(); 205 215 206 // primary change 216 // primary change 207 217 208 kineticEnergy -= gEnergy; 218 kineticEnergy -= gEnergy; 209 219 210 fParticleChange->SetProposedKineticEnergy(ki 220 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 211 fParticleChange->SetProposedMomentumDirectio 221 fParticleChange->SetProposedMomentumDirection(partDirection); 212 222 213 // save secondary 223 // save secondary 214 G4DynamicParticle* aLDMPhoton = new G4Dynami << 224 G4DynamicParticle* aLDMPhoton = >> 225 new G4DynamicParticle(theLDMPhoton,gDirection,gEnergy); 215 vdp->push_back(aLDMPhoton); 226 vdp->push_back(aLDMPhoton); 216 } 227 } 217 228 218 //....oooOO0OOooo........oooOO0OOooo........oo 229 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 219 230