Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm3/src/Stepping 26 /// \file electromagnetic/TestEm3/src/SteppingAction.cc 27 /// \brief Implementation of the SteppingActio 27 /// \brief Implementation of the SteppingAction class 28 // 28 // >> 29 // $Id$ 29 // 30 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 33 33 #include "SteppingAction.hh" 34 #include "SteppingAction.hh" 34 35 35 #include "DetectorConstruction.hh" 36 #include "DetectorConstruction.hh" >> 37 #include "RunAction.hh" 36 #include "EventAction.hh" 38 #include "EventAction.hh" 37 #include "HistoManager.hh" 39 #include "HistoManager.hh" 38 #include "Run.hh" << 39 40 40 #include "G4PhysicalConstants.hh" << 41 #include "G4Step.hh" 41 #include "G4Positron.hh" 42 #include "G4Positron.hh" 42 #include "G4RunManager.hh" 43 #include "G4RunManager.hh" >> 44 #include "G4PhysicalConstants.hh" >> 45 >> 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 47 >> 48 SteppingAction::SteppingAction(DetectorConstruction* det, RunAction* run, >> 49 EventAction* evt) >> 50 :G4UserSteppingAction(),fDetector(det),fRunAct(run),fEventAct(evt) >> 51 { } 43 52 44 //....oooOO0OOooo........oooOO0OOooo........oo 53 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 45 54 46 SteppingAction::SteppingAction(DetectorConstru << 55 SteppingAction::~SteppingAction() 47 : fDetector(det), fEventAct(evt) << 48 {} 56 {} 49 57 50 //....oooOO0OOooo........oooOO0OOooo........oo 58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 51 59 52 void SteppingAction::UserSteppingAction(const 60 void SteppingAction::UserSteppingAction(const G4Step* aStep) 53 { 61 { 54 // track informations << 62 //track informations 55 const G4StepPoint* prePoint = aStep->GetPreS << 63 const G4StepPoint* prePoint = aStep->GetPreStepPoint(); 56 << 57 // if World, return << 58 // << 59 G4VPhysicalVolume* volume = prePoint->GetTou << 60 // if sum of absorbers do not fill exactly a << 61 const G4Material* mat = volume->GetLogicalVo << 62 if (mat == fDetector->GetWorldMaterial()) re << 63 << 64 const G4StepPoint* endPoint = aStep->GetPost 64 const G4StepPoint* endPoint = aStep->GetPostStepPoint(); 65 const G4ParticleDefinition* particle = aStep << 65 const G4ParticleDefinition* particle = aStep->GetTrack()->GetDefinition(); 66 << 66 67 // here we are in an absorber. Locate it << 67 //if World, return 68 // << 68 // 69 G4int absorNum = prePoint->GetTouchableHandl << 69 G4VPhysicalVolume* volume = prePoint->GetTouchableHandle()->GetVolume(); 70 G4int layerNum = prePoint->GetTouchableHandl << 70 //if sum of absorbers do not fill exactly a layer: check material, not volume. 71 << 71 G4Material* mat = volume->GetLogicalVolume()->GetMaterial(); 72 // get Run << 72 if (mat == fDetector->GetWorldMaterial()) return; 73 Run* run = static_cast<Run*>(G4RunManager::G << 73 74 << 74 //here we are in an absorber. Locate it >> 75 // >> 76 G4int absorNum = prePoint->GetTouchableHandle()->GetCopyNumber(0); >> 77 G4int layerNum = prePoint->GetTouchableHandle()->GetCopyNumber(1); >> 78 75 // collect energy deposit taking into accoun 79 // collect energy deposit taking into account track weight 76 G4double edep = aStep->GetTotalEnergyDeposit << 80 G4double edep = aStep->GetTotalEnergyDeposit()*aStep->GetTrack()->GetWeight(); 77 << 81 78 // collect step length of charged particles 82 // collect step length of charged particles 79 G4double stepl = 0.; 83 G4double stepl = 0.; 80 if (particle->GetPDGCharge() != 0.) { 84 if (particle->GetPDGCharge() != 0.) { 81 stepl = aStep->GetStepLength(); 85 stepl = aStep->GetStepLength(); 82 run->AddChargedStep(); << 86 fRunAct->AddChargedStep(); 83 } << 87 } else { fRunAct->AddNeutralStep(); } 84 else { << 88 85 run->AddNeutralStep(); << 86 } << 87 << 88 // G4cout << "Nabs= " << absorNum << " ed 89 // G4cout << "Nabs= " << absorNum << " edep(keV)= " << edep << G4endl; 89 << 90 90 // sum up per event 91 // sum up per event 91 fEventAct->SumEnergy(absorNum, edep, stepl); << 92 fEventAct->SumEnergy(absorNum,edep,stepl); 92 << 93 93 // longitudinal profile of edep per absorber << 94 //longitudinal profile of edep per absorber 94 if (edep > 0.) { << 95 if (edep>0.) { 95 G4AnalysisManager::Instance()->FillH1(kMax << 96 G4AnalysisManager::Instance()->FillH1(MaxAbsor+absorNum, >> 97 G4double(layerNum+1), edep); 96 } 98 } 97 // energy flow << 99 //energy flow 98 // 100 // 99 // unique identificator of layer+absorber << 101 // unique identificator of layer+absorber 100 G4int Idnow = (fDetector->GetNbOfAbsor()) * << 102 G4int Idnow = (fDetector->GetNbOfAbsor())*layerNum + absorNum; 101 G4int plane; 103 G4int plane; 102 // 104 // 103 // leaving the absorber ? << 105 //leaving the absorber ? 104 if (endPoint->GetStepStatus() == fGeomBounda 106 if (endPoint->GetStepStatus() == fGeomBoundary) { 105 G4ThreeVector position = endPoint->GetPosi << 107 G4ThreeVector position = endPoint->GetPosition(); 106 G4ThreeVector direction = endPoint->GetMom 108 G4ThreeVector direction = endPoint->GetMomentumDirection(); 107 G4double sizeYZ = 0.5 * fDetector->GetCalo << 109 G4double sizeYZ = 0.5*fDetector->GetCalorSizeYZ(); 108 G4double Eflow = endPoint->GetKineticEnerg 110 G4double Eflow = endPoint->GetKineticEnergy(); 109 if (particle == G4Positron::Positron()) Ef << 111 if (particle == G4Positron::Positron()) Eflow += 2*electron_mass_c2; 110 if ((std::abs(position.y()) >= sizeYZ) || << 112 if ((std::abs(position.y()) >= sizeYZ) || (std::abs(position.z()) >= sizeYZ)) 111 run->SumLateralEleak(Idnow, Eflow); << 113 fRunAct->SumLateralEleak(Idnow, Eflow); 112 else if (direction.x() >= 0.) << 114 else if (direction.x() >= 0.) fRunAct->SumEnergyFlow(plane=Idnow+1, Eflow); 113 run->SumEnergyFlow(plane = Idnow + 1, Ef << 115 else fRunAct->SumEnergyFlow(plane=Idnow, -Eflow); 114 else << 116 } 115 run->SumEnergyFlow(plane = Idnow, -Eflow << 117 116 } << 118 //// example of Birk attenuation 117 << 119 ///G4double destep = aStep->GetTotalEnergyDeposit(); 118 //// example of Birk attenuation << 120 ///G4double response = BirksAttenuation(aStep); 119 /// G4double destep = aStep->GetTotalEnerg << 121 ///G4cout << " Destep: " << destep/keV << " keV" 120 /// G4double response = BirksAttenuation(aSt << 122 /// << " response after Birks: " << response/keV << " keV" << G4endl; 121 /// G4cout << " Destep: " << destep/keV << " << 122 /// << " response after Birks: " << re << 123 } 123 } 124 124 125 //....oooOO0OOooo........oooOO0OOooo........oo 125 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 126 126 127 G4double SteppingAction::BirksAttenuation(cons 127 G4double SteppingAction::BirksAttenuation(const G4Step* aStep) 128 { 128 { 129 // Example of Birk attenuation law in organi << 129 //Example of Birk attenuation law in organic scintillators. 130 // adapted from Geant3 PHYS337. See MIN 80 ( << 130 //adapted from Geant3 PHYS337. See MIN 80 (1970) 239-244 131 // << 131 // 132 const G4Material* material = aStep->GetTrack << 132 G4Material* material = aStep->GetTrack()->GetMaterial(); 133 G4double birk1 = material->GetIonisation()-> << 133 G4double birk1 = material->GetIonisation()->GetBirksConstant(); 134 G4double destep = aStep->GetTotalEnergyDepos << 134 G4double destep = aStep->GetTotalEnergyDeposit(); 135 G4double stepl = aStep->GetStepLength(); << 135 G4double stepl = aStep->GetStepLength(); 136 G4double charge = aStep->GetTrack()->GetDefi << 136 G4double charge = aStep->GetTrack()->GetDefinition()->GetPDGCharge(); 137 // << 137 // 138 G4double response = destep; << 138 G4double response = destep; 139 if (birk1 * destep * stepl * charge != 0.) { << 139 if (birk1*destep*stepl*charge != 0.) 140 response = destep / (1. + birk1 * destep / << 140 { 141 } << 141 response = destep/(1. + birk1*destep/stepl); 142 return response; << 142 } >> 143 return response; 143 } 144 } 144 145 145 //....oooOO0OOooo........oooOO0OOooo........oo 146 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 147 146 148