Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm3/src/Stepping 26 /// \file electromagnetic/TestEm3/src/SteppingAction.cc 27 /// \brief Implementation of the SteppingActio 27 /// \brief Implementation of the SteppingAction class 28 // 28 // >> 29 // $Id: SteppingAction.cc 78655 2014-01-14 11:13:41Z gcosmo $ 29 // 30 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 33 33 #include "SteppingAction.hh" 34 #include "SteppingAction.hh" 34 35 35 #include "DetectorConstruction.hh" 36 #include "DetectorConstruction.hh" >> 37 #include "Run.hh" 36 #include "EventAction.hh" 38 #include "EventAction.hh" 37 #include "HistoManager.hh" 39 #include "HistoManager.hh" 38 #include "Run.hh" << 39 40 40 #include "G4PhysicalConstants.hh" << 41 #include "G4Positron.hh" 41 #include "G4Positron.hh" 42 #include "G4RunManager.hh" 42 #include "G4RunManager.hh" >> 43 #include "G4PhysicalConstants.hh" 43 44 44 //....oooOO0OOooo........oooOO0OOooo........oo 45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 45 46 46 SteppingAction::SteppingAction(DetectorConstru 47 SteppingAction::SteppingAction(DetectorConstruction* det, EventAction* evt) 47 : fDetector(det), fEventAct(evt) << 48 :G4UserSteppingAction(),fDetector(det),fEventAct(evt) 48 {} << 49 { } 49 50 50 //....oooOO0OOooo........oooOO0OOooo........oo 51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 51 52 52 void SteppingAction::UserSteppingAction(const << 53 SteppingAction::~SteppingAction() 53 { << 54 { } 54 // track informations << 55 const G4StepPoint* prePoint = aStep->GetPreS << 56 55 57 // if World, return << 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 58 // << 59 G4VPhysicalVolume* volume = prePoint->GetTou << 60 // if sum of absorbers do not fill exactly a << 61 const G4Material* mat = volume->GetLogicalVo << 62 if (mat == fDetector->GetWorldMaterial()) re << 63 57 >> 58 void SteppingAction::UserSteppingAction(const G4Step* aStep) >> 59 { >> 60 //track informations >> 61 const G4StepPoint* prePoint = aStep->GetPreStepPoint(); 64 const G4StepPoint* endPoint = aStep->GetPost 62 const G4StepPoint* endPoint = aStep->GetPostStepPoint(); 65 const G4ParticleDefinition* particle = aStep << 63 const G4ParticleDefinition* particle = aStep->GetTrack()->GetDefinition(); 66 << 64 67 // here we are in an absorber. Locate it << 65 //if World, return 68 // << 66 // 69 G4int absorNum = prePoint->GetTouchableHandl << 67 G4VPhysicalVolume* volume = prePoint->GetTouchableHandle()->GetVolume(); 70 G4int layerNum = prePoint->GetTouchableHandl << 68 //if sum of absorbers do not fill exactly a layer: check material, not volume. 71 << 69 G4Material* mat = volume->GetLogicalVolume()->GetMaterial(); 72 // get Run << 70 if (mat == fDetector->GetWorldMaterial()) return; 73 Run* run = static_cast<Run*>(G4RunManager::G << 71 74 << 72 //here we are in an absorber. Locate it >> 73 // >> 74 G4int absorNum = prePoint->GetTouchableHandle()->GetCopyNumber(0); >> 75 G4int layerNum = prePoint->GetTouchableHandle()->GetCopyNumber(1); >> 76 >> 77 //get Run >> 78 Run* run = static_cast<Run*>( >> 79 G4RunManager::GetRunManager()->GetNonConstCurrentRun()); >> 80 75 // collect energy deposit taking into accoun 81 // collect energy deposit taking into account track weight 76 G4double edep = aStep->GetTotalEnergyDeposit << 82 G4double edep = aStep->GetTotalEnergyDeposit()*aStep->GetTrack()->GetWeight(); 77 << 83 78 // collect step length of charged particles 84 // collect step length of charged particles 79 G4double stepl = 0.; 85 G4double stepl = 0.; 80 if (particle->GetPDGCharge() != 0.) { 86 if (particle->GetPDGCharge() != 0.) { 81 stepl = aStep->GetStepLength(); 87 stepl = aStep->GetStepLength(); 82 run->AddChargedStep(); 88 run->AddChargedStep(); 83 } << 89 } else { run->AddNeutralStep(); } 84 else { << 90 85 run->AddNeutralStep(); << 86 } << 87 << 88 // G4cout << "Nabs= " << absorNum << " ed 91 // G4cout << "Nabs= " << absorNum << " edep(keV)= " << edep << G4endl; 89 << 92 90 // sum up per event 93 // sum up per event 91 fEventAct->SumEnergy(absorNum, edep, stepl); << 94 fEventAct->SumEnergy(absorNum,edep,stepl); 92 << 95 93 // longitudinal profile of edep per absorber << 96 //longitudinal profile of edep per absorber 94 if (edep > 0.) { << 97 if (edep>0.) { 95 G4AnalysisManager::Instance()->FillH1(kMax << 98 G4AnalysisManager::Instance()->FillH1(MaxAbsor+absorNum, >> 99 G4double(layerNum+1), edep); 96 } 100 } 97 // energy flow << 101 //energy flow 98 // 102 // 99 // unique identificator of layer+absorber << 103 // unique identificator of layer+absorber 100 G4int Idnow = (fDetector->GetNbOfAbsor()) * << 104 G4int Idnow = (fDetector->GetNbOfAbsor())*layerNum + absorNum; 101 G4int plane; 105 G4int plane; 102 // 106 // 103 // leaving the absorber ? << 107 //leaving the absorber ? 104 if (endPoint->GetStepStatus() == fGeomBounda 108 if (endPoint->GetStepStatus() == fGeomBoundary) { 105 G4ThreeVector position = endPoint->GetPosi << 109 G4ThreeVector position = endPoint->GetPosition(); 106 G4ThreeVector direction = endPoint->GetMom 110 G4ThreeVector direction = endPoint->GetMomentumDirection(); 107 G4double sizeYZ = 0.5 * fDetector->GetCalo << 111 G4double sizeYZ = 0.5*fDetector->GetCalorSizeYZ(); 108 G4double Eflow = endPoint->GetKineticEnerg 112 G4double Eflow = endPoint->GetKineticEnergy(); 109 if (particle == G4Positron::Positron()) Ef << 113 if (particle == G4Positron::Positron()) Eflow += 2*electron_mass_c2; 110 if ((std::abs(position.y()) >= sizeYZ) || << 114 if ((std::abs(position.y()) >= sizeYZ) || (std::abs(position.z()) >= sizeYZ)) 111 run->SumLateralEleak(Idnow, Eflow); << 115 run->SumLateralEleak(Idnow, Eflow); 112 else if (direction.x() >= 0.) << 116 else if (direction.x() >= 0.) run->SumEnergyFlow(plane=Idnow+1, Eflow); 113 run->SumEnergyFlow(plane = Idnow + 1, Ef << 117 else run->SumEnergyFlow(plane=Idnow, -Eflow); 114 else << 118 } 115 run->SumEnergyFlow(plane = Idnow, -Eflow << 119 116 } << 120 //// example of Birk attenuation 117 << 121 ///G4double destep = aStep->GetTotalEnergyDeposit(); 118 //// example of Birk attenuation << 122 ///G4double response = BirksAttenuation(aStep); 119 /// G4double destep = aStep->GetTotalEnerg << 123 ///G4cout << " Destep: " << destep/keV << " keV" 120 /// G4double response = BirksAttenuation(aSt << 124 /// << " response after Birks: " << response/keV << " keV" << G4endl; 121 /// G4cout << " Destep: " << destep/keV << " << 122 /// << " response after Birks: " << re << 123 } 125 } 124 126 125 //....oooOO0OOooo........oooOO0OOooo........oo 127 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 126 128 127 G4double SteppingAction::BirksAttenuation(cons 129 G4double SteppingAction::BirksAttenuation(const G4Step* aStep) 128 { 130 { 129 // Example of Birk attenuation law in organi << 131 //Example of Birk attenuation law in organic scintillators. 130 // adapted from Geant3 PHYS337. See MIN 80 ( << 132 //adapted from Geant3 PHYS337. See MIN 80 (1970) 239-244 131 // << 133 // 132 const G4Material* material = aStep->GetTrack << 134 G4Material* material = aStep->GetTrack()->GetMaterial(); 133 G4double birk1 = material->GetIonisation()-> << 135 G4double birk1 = material->GetIonisation()->GetBirksConstant(); 134 G4double destep = aStep->GetTotalEnergyDepos << 136 G4double destep = aStep->GetTotalEnergyDeposit(); 135 G4double stepl = aStep->GetStepLength(); << 137 G4double stepl = aStep->GetStepLength(); 136 G4double charge = aStep->GetTrack()->GetDefi << 138 G4double charge = aStep->GetTrack()->GetDefinition()->GetPDGCharge(); 137 // << 139 // 138 G4double response = destep; << 140 G4double response = destep; 139 if (birk1 * destep * stepl * charge != 0.) { << 141 if (birk1*destep*stepl*charge != 0.) 140 response = destep / (1. + birk1 * destep / << 142 { 141 } << 143 response = destep/(1. + birk1*destep/stepl); 142 return response; << 144 } >> 145 return response; 143 } 146 } 144 147 145 //....oooOO0OOooo........oooOO0OOooo........oo 148 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 149 146 150