Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/electromagnetic/TestEm15/README

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/extended/electromagnetic/TestEm15/README (Version 11.3.0) and /examples/extended/electromagnetic/TestEm15/README (Version 11.2)


  1 ----------------------------------------------      1 -------------------------------------------------------------------
  2                                                     2 
  3      =========================================      3      =========================================================
  4      Geant4 - an Object-Oriented Toolkit for S      4      Geant4 - an Object-Oriented Toolkit for Simulation in HEP
  5      =========================================      5      =========================================================
  6                                                     6 
  7                             TestEm15                7                             TestEm15
  8                             --------                8                             --------
  9                                                     9 
 10         How to compute and plot the final stat     10         How to compute and plot the final state of:
 11    - Multiple Scattering                           11    - Multiple Scattering
 12    - Gamma Conversion                              12    - Gamma Conversion
 13   considered as an isolated processes, see PHY     13   considered as an isolated processes, see PHYSICS.
 14                                                    14 
 15   For Multiple Scattering, the method is expos     15   For Multiple Scattering, the method is exposed below.
 16                                                    16 
 17   For Gamma Conversion, when G4BetheHeitler5DM     17   For Gamma Conversion, when G4BetheHeitler5DModel Model is used,
 18   see README.gamma for Histograms and UI comma     18   see README.gamma for Histograms and UI commands description.
 19                                                    19 
 20  1- GEOMETRY DEFINITION                            20  1- GEOMETRY DEFINITION
 21                                                    21 
 22         It is a single box representing a 'sem     22         It is a single box representing a 'semi infinite' homogeneous medium.
 23         Two parameters define the geometry:        23         Two parameters define the geometry:
 24         - the material of the box,                 24         - the material of the box,
 25         - the (full) size of the box.              25         - the (full) size of the box.
 26                                                    26 
 27         The default geometry (100 m of water)      27         The default geometry (100 m of water) is constructed in
 28         DetectorConstruction, but the above pa     28         DetectorConstruction, but the above parameters can be changed
 29         interactively via the commands defined     29         interactively via the commands defined in DetectorMessenger.
 30                                                    30 
 31  2- PHYSICS LIST                                   31  2- PHYSICS LIST
 32                                                    32 
 33         The physics list contains the standard     33         The physics list contains the standard electromagnetic processes.
 34         In order not to introduce 'artificial'     34         In order not to introduce 'artificial' constraints on the step size,
 35         there is no limitation from the maximu     35         there is no limitation from the maximum energy lost per step.
 36                                                    36 
 37  3- AN EVENT: THE PRIMARY GENERATOR                37  3- AN EVENT: THE PRIMARY GENERATOR
 38                                                    38 
 39         The primary kinematic consists of a si     39         The primary kinematic consists of a single particle starting at the edge
 40         of the box. The type of the particle a     40         of the box. The type of the particle and its energy are set in
 41         PrimaryGeneratorAction (1 MeV electron     41         PrimaryGeneratorAction (1 MeV electron), and can be changed via the G4
 42         build-in commands of ParticleGun class     42         build-in commands of ParticleGun class (see the macros provided with
 43         this example).                             43         this example).
 44                                                    44 
 45  4- PHYSICS                                        45  4- PHYSICS
 46                                                    46 
 47         All discrete processes are inactivated     47         All discrete processes are inactivated (see provided macros),
 48         so that Multiple Scattering or Gamma C     48         so that Multiple Scattering or Gamma Conversion is 'forced' to
 49         determine the first step of the primar     49         determine the first step of the primary particle.
 50         The step size and the final state are      50         The step size and the final state are computed  and plotted.
 51         Then the event is immediately killed.      51         Then the event is immediately killed.
 52                                                    52 
 53   Multiple Scattering:                             53   Multiple Scattering:
 54                                                    54 
 55   The result is compared with the 'input' data     55   The result is compared with the 'input' data, i.e. with the cross
 56         sections stored in the PhysicsTables a     56         sections stored in the PhysicsTables and used by Geant4.
 57         The stepMax command provides an additi     57         The stepMax command provides an additional control of the step size of
 58         the multiple scattering.                   58         the multiple scattering.
 59                                                    59 
 60                                                    60 
 61  5- HISTOGRAMS                                     61  5- HISTOGRAMS
 62                                                    62 
 63         The test contains 16 built-in 1D histo     63         The test contains 16 built-in 1D histograms, which are managed by
 64         G4AnalysisManager and its Messenger. T     64         G4AnalysisManager and its Messenger. The histos can be individually
 65         activated with the command:                65         activated with the command:
 66         /analysis/h1/set id nbBins  valMin val     66         /analysis/h1/set id nbBins  valMin valMax unit
 67         where unit is the desired unit for the     67         where unit is the desired unit for the histo (MeV or keV, etc..)
 68         (see the macros xxxx.mac).                 68         (see the macros xxxx.mac).
 69                                                    69 
 70         1       Multiple Scattering. True step     70         1       Multiple Scattering. True step length
 71         2       Multiple Scattering. Geom step     71         2       Multiple Scattering. Geom step length
 72         3       Multiple Scattering. Ratio geo     72         3       Multiple Scattering. Ratio geomSl/trueSl
 73         4       Multiple Scattering. Lateral d     73         4       Multiple Scattering. Lateral displacement: radius
 74         5       Multiple Scattering. Lateral d     74         5       Multiple Scattering. Lateral displac: psi_space
 75         6       Multiple Scattering. Angular d     75         6       Multiple Scattering. Angular distrib: theta_plane
 76         7       Multiple Scattering. Phi-posit     76         7       Multiple Scattering. Phi-position angle
 77         8       Multiple Scattering. Phi-direc     77         8       Multiple Scattering. Phi-direction angle
 78         9       Multiple Scattering. Correlati     78         9       Multiple Scattering. Correlation: cos(phiPos-phiDir)
 79                                                    79 
 80         10      Gamma Conversion. Open Angle *     80         10      Gamma Conversion. Open Angle * Egamma
 81         11      Gamma Conversion. Log10(P reco     81         11      Gamma Conversion. Log10(P recoil)
 82         12      Gamma Conversion. Phi P recoil     82         12      Gamma Conversion. Phi P recoil angle
 83         13      Gamma Conversion. Phi P plus a     83         13      Gamma Conversion. Phi P plus angle
 84         14      Gamma Conversion. 2 * cos(phip     84         14      Gamma Conversion. 2 * cos(phiplus + phiminus) Asymmetry
 85         15      Gamma Conversion. E plus / E g     85         15      Gamma Conversion. E plus / E gamma
 86         16      Gamma Conversion. Phi of Gamma     86         16      Gamma Conversion. Phi of Gamma Polarization
 87                                                    87 
 88                                                    88 
 89    The histograms are managed by the HistoMana     89    The histograms are managed by the HistoManager class and its Messenger.
 90    The histos can be individually activated wi     90    The histos can be individually activated with the command:
 91    /analysis/h1/set id nbBins  valMin valMax u     91    /analysis/h1/set id nbBins  valMin valMax unit
 92    where unit is the desired unit for the hist     92    where unit is the desired unit for the histo (MeV or keV, deg or mrad, etc..)
 93                                                    93 
 94    One can control the name of the histograms      94    One can control the name of the histograms file with the command:
 95    /analysis/setFileName  name  (default teste     95    /analysis/setFileName  name  (default testem15)
 96                                                    96 
 97    It is possible to choose the format of the      97    It is possible to choose the format of the histogram file : root (default),
 98    hdf5, xml, csv, by changing the default fil     98    hdf5, xml, csv, by changing the default file type in HistoManager.cc
 99                                                    99 
100    It is also possible to print selected histo    100    It is also possible to print selected histograms on an ascii file:
101    /analysis/h1/setAscii id                       101    /analysis/h1/setAscii id
102    All selected histos will be written on a fi    102    All selected histos will be written on a file name.ascii (default testem15)
103                                                   103 
104  6- VISUALIZATION                                 104  6- VISUALIZATION
105                                                   105 
106         The Visualization Manager is set in th    106         The Visualization Manager is set in the main().
107         The initialization of the drawing is d    107         The initialization of the drawing is done via the commands
108         /vis/... in the macro vis.mac. To get     108         /vis/... in the macro vis.mac. To get visualization:
109         > /control/execute vis.mac                109         > /control/execute vis.mac
110                                                   110 
111         The detector has a default view which     111         The detector has a default view which is a longitudinal view of the
112         box.                                      112         box.
113                                                   113 
114         The tracks are drawn at the end of eve    114         The tracks are drawn at the end of event, and erased at the end of run.
115                                                   115 
116  7- HOW TO START ?                                116  7- HOW TO START ?
117                                                   117 
118         execute TestEm15 in 'batch' mode from     118         execute TestEm15 in 'batch' mode from macro files:
119                 % TestEm15   compt.mac            119                 % TestEm15   compt.mac
120                                                   120 
121         execute TestEm15 in 'interactive mode'    121         execute TestEm15 in 'interactive mode' with visualization:
122                 % TestEm15                        122                 % TestEm15
123                 Idle> control/execute vis.mac     123                 Idle> control/execute vis.mac
124                 ....                              124                 ....
125                 Idle> type your commands          125                 Idle> type your commands
126                 ....                              126                 ....
127                 Idle> exit                        127                 Idle> exit
128                                                   128 
129 8 - MACROS                                        129 8 - MACROS
130        The examples of macros for Multiple Sca    130        The examples of macros for Multiple Scattering:
131        electron.mac muon.mac  proton.mac          131        electron.mac muon.mac  proton.mac
132                                                   132 
133        The example of Gamma Conversion macro:     133        The example of Gamma Conversion macro:
134        gamma.mac - gamma to e+ e-                 134        gamma.mac - gamma to e+ e-
135        gamma2mumu.mac gamma to mu+ mu-            135        gamma2mumu.mac gamma to mu+ mu-