Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/electromagnetic/TestEm15/README

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/extended/electromagnetic/TestEm15/README (Version 11.3.0) and /examples/extended/electromagnetic/TestEm15/README (Version 10.7.p2)


  1 ----------------------------------------------      1 -------------------------------------------------------------------
  2                                                     2 
  3      =========================================      3      =========================================================
  4      Geant4 - an Object-Oriented Toolkit for S      4      Geant4 - an Object-Oriented Toolkit for Simulation in HEP
  5      =========================================      5      =========================================================
  6                                                     6 
  7                             TestEm15                7                             TestEm15
  8                             --------                8                             --------
  9                                                     9 
 10         How to compute and plot the final stat <<  10         How to compute and plot the final state of Multiple Scattering 
 11    - Multiple Scattering                       <<  11         or Gamma Conversion considered as an isolated processes.
 12    - Gamma Conversion                          <<  12         The method is exposed below : see item Physics. 
 13   considered as an isolated processes, see PHY <<  13         
 14                                                << 
 15   For Multiple Scattering, the method is expos << 
 16                                                << 
 17   For Gamma Conversion, when G4BetheHeitler5DM << 
 18   see README.gamma for Histograms and UI comma << 
 19                                                << 
 20  1- GEOMETRY DEFINITION                            14  1- GEOMETRY DEFINITION
 21                                                <<  15  
 22         It is a single box representing a 'sem     16         It is a single box representing a 'semi infinite' homogeneous medium.
 23         Two parameters define the geometry:    <<  17         Two parameters define the geometry :
 24         - the material of the box,                 18         - the material of the box,
 25         - the (full) size of the box.              19         - the (full) size of the box.
 26                                                <<  20         
 27         The default geometry (100 m of water)  <<  21         The default geometry (100 m of water) is constructed in 
 28         DetectorConstruction, but the above pa <<  22         DetectorConstruction, but the above parameters can be changed 
 29         interactively via the commands defined     23         interactively via the commands defined in DetectorMessenger.
 30                                                <<  24         
 31  2- PHYSICS LIST                                   25  2- PHYSICS LIST
 32                                                <<  26  
 33         The physics list contains the standard     27         The physics list contains the standard electromagnetic processes.
 34         In order not to introduce 'artificial' <<  28         In order not to introduce 'artificial' constraints on the step size, 
 35         there is no limitation from the maximu <<  29         there is no limitation from the maximum energy lost per step.  
 36                                                <<  30          
 37  3- AN EVENT: THE PRIMARY GENERATOR            <<  31  3- AN EVENT : THE PRIMARY GENERATOR
 38                                                <<  32  
 39         The primary kinematic consists of a si     33         The primary kinematic consists of a single particle starting at the edge
 40         of the box. The type of the particle a <<  34         of the box. The type of the particle and its energy are set in 
 41         PrimaryGeneratorAction (1 MeV electron <<  35         PrimaryGeneratorAction (1 MeV electron), and can be changed via the G4 
 42         build-in commands of ParticleGun class <<  36         build-in commands of ParticleGun class (see the macros provided with 
 43         this example).                             37         this example).
 44                                                <<  38         
 45  4- PHYSICS                                        39  4- PHYSICS
 46                                                <<  40  
 47         All discrete processes are inactivated     41         All discrete processes are inactivated (see provided macros),
 48         so that Multiple Scattering or Gamma C     42         so that Multiple Scattering or Gamma Conversion is 'forced' to
 49         determine the first step of the primar     43         determine the first step of the primary particle.
 50         The step size and the final state are      44         The step size and the final state are computed  and plotted.
 51         Then the event is immediately killed.      45         Then the event is immediately killed.
 52                                                <<  46         
 53   Multiple Scattering:                         <<  47         The result is compared with the 'input' data, i.e. with the cross
 54                                                << 
 55   The result is compared with the 'input' data << 
 56         sections stored in the PhysicsTables a     48         sections stored in the PhysicsTables and used by Geant4.
                                                   >>  49         
 57         The stepMax command provides an additi     50         The stepMax command provides an additional control of the step size of
 58         the multiple scattering.                   51         the multiple scattering.
 59                                                <<  52         
 60                                                    53 
 61  5- HISTOGRAMS                                     54  5- HISTOGRAMS
 62                                                <<  55          
 63         The test contains 16 built-in 1D histo <<  56         The test contains 16 built-in 1D histograms, which are managed by 
 64         G4AnalysisManager and its Messenger. T <<  57         G4AnalysisManager and its Messenger. The histos can be individually 
 65         activated with the command:            <<  58         activated with the command :
 66         /analysis/h1/set id nbBins  valMin val <<  59         /analysis/h1/set id nbBins  valMin valMax unit 
 67         where unit is the desired unit for the     60         where unit is the desired unit for the histo (MeV or keV, etc..)
 68         (see the macros xxxx.mac).                 61         (see the macros xxxx.mac).
 69                                                <<  62                 
 70         1       Multiple Scattering. True step     63         1       Multiple Scattering. True step length
 71         2       Multiple Scattering. Geom step     64         2       Multiple Scattering. Geom step length
 72         3       Multiple Scattering. Ratio geo     65         3       Multiple Scattering. Ratio geomSl/trueSl
 73         4       Multiple Scattering. Lateral d     66         4       Multiple Scattering. Lateral displacement: radius
 74         5       Multiple Scattering. Lateral d     67         5       Multiple Scattering. Lateral displac: psi_space
 75         6       Multiple Scattering. Angular d     68         6       Multiple Scattering. Angular distrib: theta_plane
 76         7       Multiple Scattering. Phi-posit     69         7       Multiple Scattering. Phi-position angle
 77         8       Multiple Scattering. Phi-direc     70         8       Multiple Scattering. Phi-direction angle
 78         9       Multiple Scattering. Correlati     71         9       Multiple Scattering. Correlation: cos(phiPos-phiDir)
 79                                                    72 
 80         10      Gamma Conversion. Open Angle *     73         10      Gamma Conversion. Open Angle * Egamma
 81         11      Gamma Conversion. Log10(P reco     74         11      Gamma Conversion. Log10(P recoil)
 82         12      Gamma Conversion. Phi P recoil     75         12      Gamma Conversion. Phi P recoil angle
 83         13      Gamma Conversion. Phi P plus a     76         13      Gamma Conversion. Phi P plus angle
 84         14      Gamma Conversion. 2 * cos(phip     77         14      Gamma Conversion. 2 * cos(phiplus + phiminus) Asymmetry
 85         15      Gamma Conversion. E plus / E g     78         15      Gamma Conversion. E plus / E gamma
 86         16      Gamma Conversion. Phi of Gamma     79         16      Gamma Conversion. Phi of Gamma Polarization
 87                                                    80 
 88                                                <<  81       
 89    The histograms are managed by the HistoMana <<  82    The histograms are managed by the HistoManager class and its Messenger. 
 90    The histos can be individually activated wi <<  83    The histos can be individually activated with the command :
 91    /analysis/h1/set id nbBins  valMin valMax u <<  84    /analysis/h1/set id nbBins  valMin valMax unit 
 92    where unit is the desired unit for the hist     85    where unit is the desired unit for the histo (MeV or keV, deg or mrad, etc..)
 93                                                <<  86    
 94    One can control the name of the histograms      87    One can control the name of the histograms file with the command:
 95    /analysis/setFileName  name  (default teste     88    /analysis/setFileName  name  (default testem15)
 96                                                <<  89    
 97    It is possible to choose the format of the      90    It is possible to choose the format of the histogram file : root (default),
 98    hdf5, xml, csv, by changing the default fil <<  91    hbook, xml, csv, by using namespace in HistoManager.hh       
 99                                                <<  92         
100    It is also possible to print selected histo     93    It is also possible to print selected histograms on an ascii file:
101    /analysis/h1/setAscii id                        94    /analysis/h1/setAscii id
102    All selected histos will be written on a fi     95    All selected histos will be written on a file name.ascii (default testem15)
103                                                <<  96                                         
104  6- VISUALIZATION                                  97  6- VISUALIZATION
105                                                <<  98  
106         The Visualization Manager is set in th     99         The Visualization Manager is set in the main().
107         The initialization of the drawing is d    100         The initialization of the drawing is done via the commands
108         /vis/... in the macro vis.mac. To get     101         /vis/... in the macro vis.mac. To get visualization:
109         > /control/execute vis.mac                102         > /control/execute vis.mac
110                                                << 103         
111         The detector has a default view which  << 104         The detector has a default view which is a longitudinal view of the 
112         box.                                      105         box.
113                                                << 106         
114         The tracks are drawn at the end of eve    107         The tracks are drawn at the end of event, and erased at the end of run.
115                                                << 108         
116  7- HOW TO START ?                                109  7- HOW TO START ?
117                                                << 110  
118         execute TestEm15 in 'batch' mode from  << 111         execute TestEm15 in 'batch' mode from macro files :
119                 % TestEm15   compt.mac            112                 % TestEm15   compt.mac
120                                                << 113                 
121         execute TestEm15 in 'interactive mode' << 114         execute TestEm15 in 'interactive mode' with visualization :
122                 % TestEm15                        115                 % TestEm15
123                 Idle> control/execute vis.mac     116                 Idle> control/execute vis.mac
124                 ....                              117                 ....
125                 Idle> type your commands          118                 Idle> type your commands
126                 ....                              119                 ....
127                 Idle> exit                        120                 Idle> exit
128                                                << 121  
129 8 - MACROS                                        122 8 - MACROS
130        The examples of macros for Multiple Sca    123        The examples of macros for Multiple Scattering:
131        electron.mac muon.mac  proton.mac          124        electron.mac muon.mac  proton.mac
132                                                   125 
133        The example of Gamma Conversion macro:  << 126        The example of Gamma Conversion macro :
134        gamma.mac - gamma to e+ e-              << 127        gamma.mac - gamma to e+ e- 
135        gamma2mumu.mac gamma to mu+ mu-         << 128        gamma2mumu.mac gamma to mu+ mu-