Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/biasing/README

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/extended/biasing/README (Version 11.3.0) and /examples/extended/biasing/README (Version 11.0.p3,)


  1                                                   
  2                Examples for event biasing: B01    
  3                -------------------------------    
  4                                                   
  5 B01, B02 and B03 applications demonstrate the     
  6 reduction techniques supported in Geant4, or p    
  7 applications.                                     
  8                                                   
  9 General remark to variance reduction              
 10 ------------------------------------              
 11 The tools provided for importance sampling (or    
 12 Russian roulette) and for the weight window te    
 13 have a good understanding of the physics in th    
 14 the user has to decide which particle types ha    
 15 cells (physical volumes, replicas) and assign     
 16 windows to that cells. If this is not done pro    
 17 expected that the results describe a real expe    
 18 here only demonstrate how to use the tools tec    
 19 to produce physical correct results.              
 20                                                   
 21 General remark to scoring                         
 22 -------------------------                         
 23 Scoring is carried out using the built-in Mult    
 24 parallel geometries this requires a special sc    
 25 See examples/extended/runAndEvent (especailly     
 26                                                   
 27 Known problems - should not happen                
 28 ----------------------------------                
 29 In the following scenario it can happen that a    
 30 biased and it's weight is therefore not change    
 31 a boundary where biasing should happen.           
 32 Importance and weight window sampling create p    
 33 between volumes. If the GPIL method of a physi    
 34 0 as step length for a particle on a boundary     
 35 that process changes the direction of the part    
 36 former volume the biasing won't be invoked.       
 37 This will produce particles with weights that     
 38 importance of the current volumes.                
 39                                                   
 40 Further information:                              
 41 --------------------                              
 42 Short description of importance sampling and s    
 43 https://geant4.web.cern.ch/collaboration/worki    
 44                                                   
 45 Example B01                                       
 46 ===========                                       
 47                                                   
 48 The example uses importance sampling or the we    
 49 according to an input parameter. It uses scori    
 50 Importance values or weight windows are define    
 51 geometry. In this example the weight window te    
 52 that it behaves equivalent to importance sampl    
 53 not a window but simply the inverse of the imp    
 54 one energy region is used that covers all ener    
 55 The user may change the weight window configur    
 56 initialization of the weight window algorithm     
 57 Different energy bounds for the weight window     
 58 in B01DetectorConstruction.                       
 59                                                   
 60 The executable takes one optional argument: 0     
 61 with argument: 0, the importance sampling is a    
 62 the weight window technique is applied.           
 63                                                   
 64 A modular approach is applied to the physicsli    
 65                                                   
 66 Example B02                                       
 67 ===========                                       
 68                                                   
 69 This example uses a parallel geometry to defin    
 70 for scoring and importance sampling. The outpu    
 71                                                   
 72 A modular approach is applied to the physicsli    
 73 The parallel geometry is included in this exte    
 74                                                   
 75 Example B03                                       
 76 ===========                                       
 77                                                   
 78 This example uses a parallel geometry to defin    
 79 for scoring and importance sampling. The outpu    
 80 equivalent to B02 (and B01).                      
 81                                                   
 82 This demonstrates a customised "flat" physics     
 83 of biasing. Complementary approach to the modu    
 84                                                   
 85                                                   
 86  _____________________________________________    
 87                                                   
 88                                                   
 89                   Generic biasing examples GB0    
 90                   ----------------------------    
 91                                                   
 92 These examples illustrate the usage of a biasi    
 93 version Geant4 10.0.                              
 94 The scheme is meant to be extensible, not limi    
 95                                                   
 96 Example GB01:                                     
 97 =============                                     
 98                                                   
 99 This example illustrates how to bias process c    
100                                                   
101                                                   
102 Example GB02:                                     
103 =============                                     
104                                                   
105 Illustrates a force collision scheme similar t    
106                                                   
107                                                   
108 Example GB03:                                     
109 =============                                     
110                                                   
111 Illustrates geometry based biasing.               
112                                                   
113                                                   
114 Example GB04:                                     
115 =============                                     
116                                                   
117 Illustrates a bremsstrahlung splitting.           
118                                                   
119                                                   
120 Example GB05:                                     
121 =============                                     
122                                                   
123 Illustrates a "splitting by cross-section" tec    
124 technique using absorption cross-section to co    
125                                                   
126                                                   
127 Example GB06:                                     
128 =============                                     
129                                                   
130 Illustrates the usage of parallel geometries w    
131                                                   
132 Example GB07:                                     
133 =============                                     
134                                                   
135 Illustrates the usage of leading particle bias    
136                                                   
137                                                   
138  _____________________________________________    
139                                                   
140                                                   
141              Reverse MonteCarlo Technique exam    
142              ---------------------------------    
143                                                   
144 Example ReverseMC01                               
145 ===================                               
146                                                   
147 Example illustrating the use of the Reverse Mo    
148 application. See details in ReverseMC01/README    
149