Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ 26 // 27 // 27 /// \file GB04BOptnBremSplitting.cc 28 /// \file GB04BOptnBremSplitting.cc 28 /// \brief Implementation of the GB04BOptnBrem 29 /// \brief Implementation of the GB04BOptnBremSplitting class 29 30 30 #include "GB04BOptnBremSplitting.hh" 31 #include "GB04BOptnBremSplitting.hh" 31 << 32 #include "G4BiasingProcessInterface.hh" 32 #include "G4BiasingProcessInterface.hh" >> 33 33 #include "G4ParticleChangeForLoss.hh" 34 #include "G4ParticleChangeForLoss.hh" 34 35 35 //....oooOO0OOooo........oooOO0OOooo........oo 36 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 36 37 37 GB04BOptnBremSplitting::GB04BOptnBremSplitting 38 GB04BOptnBremSplitting::GB04BOptnBremSplitting(G4String name) 38 : G4VBiasingOperation(name), fSplittingFacto << 39 : G4VBiasingOperation(name), 39 {} << 40 fSplittingFactor(1), >> 41 fParticleChange() >> 42 { >> 43 } 40 44 41 //....oooOO0OOooo........oooOO0OOooo........oo 45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 42 46 43 GB04BOptnBremSplitting::~GB04BOptnBremSplittin << 47 GB04BOptnBremSplitting::~GB04BOptnBremSplitting() >> 48 { >> 49 } 44 50 45 G4VParticleChange* << 51 G4VParticleChange* 46 GB04BOptnBremSplitting::ApplyFinalStateBiasing << 52 GB04BOptnBremSplitting:: 47 << 53 ApplyFinalStateBiasing( const G4BiasingProcessInterface* callingProcess, >> 54 const G4Track* track, >> 55 const G4Step* step, >> 56 G4bool& ) 48 { 57 { >> 58 49 // -- Collect brem. process (wrapped process 59 // -- Collect brem. process (wrapped process) final state: 50 G4VParticleChange* processFinalState = 60 G4VParticleChange* processFinalState = 51 callingProcess->GetWrappedProcess()->PostS 61 callingProcess->GetWrappedProcess()->PostStepDoIt(*track, *step); 52 62 53 // -- if no splitting requested, let the bre 63 // -- if no splitting requested, let the brem. process to return directly its 54 // -- generated final state: 64 // -- generated final state: 55 if (fSplittingFactor == 1) return processFin << 65 if ( fSplittingFactor == 1 ) return processFinalState; 56 66 57 // -- a special case here: the brem. process 67 // -- a special case here: the brem. process corrects for cross-section change 58 // -- over the step due to energy loss by so 68 // -- over the step due to energy loss by sometimes "abandoning" the interaction, 59 // -- returning an unchanged incoming electr 69 // -- returning an unchanged incoming electron/positron. 60 // -- We respect this correction, and if no 70 // -- We respect this correction, and if no secondary is produced, its means this 61 // -- case is happening: 71 // -- case is happening: 62 if (processFinalState->GetNumberOfSecondarie << 72 if ( processFinalState->GetNumberOfSecondaries() == 0 ) return processFinalState; 63 73 64 // -- Now start the biasing: 74 // -- Now start the biasing: 65 // -- - the electron state will be taken a 75 // -- - the electron state will be taken as the first one produced by the brem. 66 // -- process, hence the one stored in a 76 // -- process, hence the one stored in above processFinalState particle change. 67 // -- This state will be stored in our f 77 // -- This state will be stored in our fParticleChange object. 68 // -- - the photon accompagnying the elect 78 // -- - the photon accompagnying the electron will be stored also this way. 69 // -- - we will then do fSplittingFactor - 79 // -- - we will then do fSplittingFactor - 1 call to the brem. process to collect 70 // -- fSplittingFactor - 1 additionnal g 80 // -- fSplittingFactor - 1 additionnal gammas. All these will be stored in our 71 // -- fParticleChange object. 81 // -- fParticleChange object. 72 82 73 // -- We called the brem. process above. Its 83 // -- We called the brem. process above. Its concrete particle change is indeed 74 // -- a "G4ParticleChangeForLoss" object. We 84 // -- a "G4ParticleChangeForLoss" object. We cast this particle change to access 75 // -- methods of the concrete G4ParticleChan 85 // -- methods of the concrete G4ParticleChangeForLoss type: 76 G4ParticleChangeForLoss* actualParticleChang << 86 G4ParticleChangeForLoss* actualParticleChange = 77 << 87 ( G4ParticleChangeForLoss* ) processFinalState ; >> 88 78 fParticleChange.Initialize(*track); 89 fParticleChange.Initialize(*track); 79 90 80 // -- Store electron final state: 91 // -- Store electron final state: 81 fParticleChange.ProposeTrackStatus(actualPar << 92 fParticleChange. 82 fParticleChange.ProposeEnergy(actualParticle << 93 ProposeTrackStatus ( actualParticleChange->GetTrackStatus() ); 83 fParticleChange.ProposeMomentumDirection(act << 94 fParticleChange. >> 95 ProposeEnergy ( actualParticleChange->GetProposedKineticEnergy() ); >> 96 fParticleChange. >> 97 ProposeMomentumDirection( actualParticleChange->GetProposedMomentumDirection() ); 84 98 85 // -- Now deal with the gamma's: 99 // -- Now deal with the gamma's: 86 // -- their common weight: 100 // -- their common weight: 87 G4double gammaWeight = track->GetWeight() / 101 G4double gammaWeight = track->GetWeight() / fSplittingFactor; 88 << 102 89 // -- inform we will have fSplittingFactor g 103 // -- inform we will have fSplittingFactor gamma's: 90 fParticleChange.SetNumberOfSecondaries(fSpli << 104 fParticleChange.SetNumberOfSecondaries( fSplittingFactor ); 91 105 92 // -- inform we take care of secondaries wei 106 // -- inform we take care of secondaries weight (otherwise these 93 // -- secondaries are by default given the p 107 // -- secondaries are by default given the primary weight). 94 fParticleChange.SetSecondaryWeightByProcess( 108 fParticleChange.SetSecondaryWeightByProcess(true); 95 109 96 // -- Store first gamma: 110 // -- Store first gamma: 97 G4Track* gammaTrack = actualParticleChange-> 111 G4Track* gammaTrack = actualParticleChange->GetSecondary(0); 98 gammaTrack->SetWeight(gammaWeight); << 112 gammaTrack->SetWeight( gammaWeight ); 99 fParticleChange.AddSecondary(gammaTrack); << 113 fParticleChange.AddSecondary( gammaTrack ); 100 // -- and clean-up the brem. process particl 114 // -- and clean-up the brem. process particle change: 101 actualParticleChange->Clear(); 115 actualParticleChange->Clear(); 102 116 103 // -- now start the fSplittingFactor-1 calls 117 // -- now start the fSplittingFactor-1 calls to the brem. process to store each 104 // -- related gamma: 118 // -- related gamma: 105 G4int nCalls = 1; 119 G4int nCalls = 1; 106 while (nCalls < fSplittingFactor) { << 120 while ( nCalls < fSplittingFactor ) 107 // ( note: we don't need to cast to actual << 121 { 108 // secondary particles are from base cla << 122 // ( note: we don't need to cast to actual type here, as methods for accessing 109 processFinalState = callingProcess->GetWra << 123 // secondary particles are from base class G4VParticleChange ) 110 if (processFinalState->GetNumberOfSecondar << 124 processFinalState = callingProcess->GetWrappedProcess()->PostStepDoIt(*track, *step); 111 gammaTrack = processFinalState->GetSecon << 125 if ( processFinalState->GetNumberOfSecondaries() == 1 ) 112 gammaTrack->SetWeight(gammaWeight); << 126 { 113 fParticleChange.AddSecondary(gammaTrack) << 127 gammaTrack = processFinalState->GetSecondary(0); 114 nCalls++; << 128 gammaTrack->SetWeight( gammaWeight ); 115 } << 129 fParticleChange.AddSecondary( gammaTrack ); 116 // -- very rare special case: we ignore fo << 130 nCalls++; 117 else if (processFinalState->GetNumberOfSec << 131 } 118 for (G4int i = 0; i < processFinalState- << 132 // -- very rare special case: we ignore for now. 119 delete processFinalState->GetSecondary << 133 else if ( processFinalState->GetNumberOfSecondaries() > 1 ) >> 134 { >> 135 for ( G4int i = 0 ; i < processFinalState->GetNumberOfSecondaries() ; i++) >> 136 delete processFinalState->GetSecondary(i); >> 137 } >> 138 processFinalState->Clear(); 120 } 139 } 121 processFinalState->Clear(); << 122 } << 123 140 124 // -- we are done: 141 // -- we are done: 125 return &fParticleChange; 142 return &fParticleChange; 126 } 143 } 127 144 128 //....oooOO0OOooo........oooOO0OOooo........oo 145 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 129 146