Geant4 Cross Reference |
1 Environment variable "G4FORCE_RUN_MANAGER_TYPE << 2 1 3 ###################################### << 2 ************************************************************* 4 !!! WARNING - FPE detection is activat << 3 Geant4 version Name: geant4-09-00-cand-03 (29-June-2007) 5 ###################################### << 4 Copyright : Geant4 Collaboration 6 << 5 Reference : NIM A 506 (2003), 250-303 7 << 6 WWW : http://cern.ch/geant4 8 ################################ << 7 ************************************************************* 9 !!! G4Backtrace is activated !!! << 8 10 ################################ << 9 B01PhysicsList::SetCuts:CutLength : 1 (mm) 11 << 12 << 13 ********************************************** << 14 Geant4 version Name: geant4-11-03-ref-00 ( << 15 Copyright : Geant4 Coll << 16 References : NIM A 506 ( << 17 : IEEE-TNS 53 << 18 : NIM A 835 ( << 19 WWW : http://gean << 20 ********************************************** << 21 << 22 <<< Geant4 Physics List simulation engine: FTF << 23 << 24 << 25 hInelastic FTFP_BERT : threshold between BERT << 26 for pions : 3 to 6 GeV << 27 for kaons : 3 to 6 GeV << 28 for proton : 3 to 6 GeV << 29 for neutron : 3 to 6 GeV << 30 << 31 ### Adding tracking cuts for neutron TimeCut( << 32 paraFlag: 0 << 33 Preparing Importance Sampling << 34 G4IStore:: Creating new MASS IStore << 35 G4GeometrySampler:: preparing importance sampl << 36 G4ImportanceConfigurator:: setting world name << 37 G4ImportanceConfigurator:: entering importance << 38 ### G4ImportanceProcess:: Creating << 39 G4ImportanceProcess:: importance process paraf << 40 === G4ProcessPlacer::AddProcessAsSecondDoIt: f << 41 Modifying Process Order for ProcessName: Imp << 42 The initial AlongStep Vectors: << 43 GPIL Vector: << 44 Transportation << 45 DoIt Vector: << 46 Transportation << 47 The initial PostStep Vectors: << 48 GPIL Vector: << 49 nKiller << 50 nCapture << 51 neutronInelastic << 52 hadElastic << 53 Decay << 54 Transportation << 55 DoIt Vector: << 56 Transportation << 57 Decay << 58 hadElastic << 59 neutronInelastic << 60 nCapture << 61 nKiller << 62 The final AlongStep Vectors: << 63 GPIL Vector: << 64 ImportanceProcess << 65 Transportation << 66 DoIt Vector: << 67 Transportation << 68 ImportanceProcess << 69 The final PostStep Vectors: << 70 GPIL Vector: << 71 nKiller << 72 nCapture << 73 neutronInelastic << 74 hadElastic << 75 Decay << 76 ImportanceProcess << 77 Transportation << 78 DoIt Vector: << 79 Transportation << 80 ImportanceProcess << 81 Decay << 82 hadElastic << 83 neutronInelastic << 84 nCapture << 85 nKiller << 86 ============================================== << 87 B01DetectorConstruction:: Creating Importance << 88 Going to assign importance: 1, to volume: cell 10 Going to assign importance: 1, to volume: cell_01 89 Going to assign importance: 2, to volume: cell 11 Going to assign importance: 2, to volume: cell_02 90 Going to assign importance: 4, to volume: cell 12 Going to assign importance: 4, to volume: cell_03 91 Going to assign importance: 8, to volume: cell 13 Going to assign importance: 8, to volume: cell_04 92 Going to assign importance: 16, to volume: cel 14 Going to assign importance: 16, to volume: cell_05 93 Going to assign importance: 32, to volume: cel 15 Going to assign importance: 32, to volume: cell_06 94 Going to assign importance: 64, to volume: cel 16 Going to assign importance: 64, to volume: cell_07 95 Going to assign importance: 128, to volume: ce 17 Going to assign importance: 128, to volume: cell_08 96 Going to assign importance: 256, to volume: ce 18 Going to assign importance: 256, to volume: cell_09 97 Going to assign importance: 512, to volume: ce 19 Going to assign importance: 512, to volume: cell_10 98 Going to assign importance: 1024, to volume: c 20 Going to assign importance: 1024, to volume: cell_11 99 Going to assign importance: 2048, to volume: c 21 Going to assign importance: 2048, to volume: cell_12 100 Going to assign importance: 4096, to volume: c 22 Going to assign importance: 4096, to volume: cell_13 101 Going to assign importance: 8192, to volume: c 23 Going to assign importance: 8192, to volume: cell_14 102 Going to assign importance: 16384, to volume: 24 Going to assign importance: 16384, to volume: cell_15 103 Going to assign importance: 32768, to volume: 25 Going to assign importance: 32768, to volume: cell_16 104 Going to assign importance: 65536, to volume: 26 Going to assign importance: 65536, to volume: cell_17 105 Going to assign importance: 131072, to volume: 27 Going to assign importance: 131072, to volume: cell_18 106 ============================================== << 28 preparing importance sampling 107 ====== Electromagnetic Physics << 29 creating istore 108 ============================================== << 30 creating importance configurator 109 LPM effect enabled << 31 entering configure 110 Enable creation and use of sampling tables << 32 importance configurator push_back 111 Apply cuts on all EM processes << 33 pushed 112 Use combined TransportationWithMsc << 34 vsampler configurator loop 113 Use general process << 35 looping 1 114 Enable linear polarisation for gamma << 36 sampler configurator 115 Enable photoeffect sampling below K-shell << 37 entering importance configure, paraflag 0 116 Enable sampling of quantum entanglement << 38 creating importance process, paraflag is: 0 117 X-section factor for integral approach << 39 importance process paraflag is: 0 118 Min kinetic energy for tables << 40 === G4ProcessPlacer::AddProcessAsSecondDoIt: for: neutron 119 Max kinetic energy for tables << 41 ProcessName: ImportanceProcess 120 Number of bins per decade of a table << 42 The initial Vectors: 121 Verbose level << 43 GPIL Vector: 122 Verbose level for worker thread << 44 Decay 123 Bremsstrahlung energy threshold above which << 45 HadronCapture 124 primary e+- is added to the list of secondar << 46 HadronFission 125 Bremsstrahlung energy threshold above which pr << 47 inelastic 126 muon/hadron is added to the list of secondar << 48 HadronElastic 127 Positron annihilation at rest model << 49 Transportation 128 Enable 3 gamma annihilation on fly << 50 DoIt Vector: 129 Lowest triplet kinetic energy << 51 Transportation 130 Enable sampling of gamma linear polarisation << 52 HadronElastic 131 5D gamma conversion model type << 53 inelastic 132 5D gamma conversion model on isolated ion << 54 HadronFission 133 Use Ricardo-Gerardo pair production model << 55 HadronCapture 134 Livermore data directory << 56 Decay 135 ============================================== << 57 The final Vectors: 136 ====== Ionisation Parameters << 58 GPIL Vector: 137 ============================================== << 59 Decay 138 Step function for e+- << 60 HadronCapture 139 Step function for muons/hadrons << 61 HadronFission 140 Step function for light ions << 62 inelastic 141 Step function for general ions << 63 HadronElastic 142 Lowest e+e- kinetic energy << 64 ImportanceProcess 143 Lowest muon/hadron kinetic energy << 65 Transportation 144 Use ICRU90 data << 66 DoIt Vector: 145 Fluctuations of dE/dx are enabled << 67 Transportation 146 Type of fluctuation model for leptons and hadr << 68 ImportanceProcess 147 Use built-in Birks satuaration << 69 HadronElastic 148 Build CSDA range enabled << 70 inelastic 149 Use cut as a final range enabled << 71 HadronFission 150 Enable angular generator interface << 72 HadronCapture 151 Max kinetic energy for CSDA tables << 73 Decay 152 Max kinetic energy for NIEL computation << 74 ================================================ 153 Linear loss limit << 75 configure preconf 154 Read data from file for e+e- pair production b << 76 155 ============================================== << 77 conv: Total cross sections has a good parametrisation from 1.5 MeV to 100 GeV for all Z; 156 ====== Multiple Scattering Par << 78 sampling secondary e+e- according Bethe-Heitler model 157 ============================================== << 79 tables are built for gamma 158 Type of msc step limit algorithm for e+- << 80 Lambda tables from 1.022 MeV to 100 GeV in 100 bins. 159 Type of msc step limit algorithm for muons/had << 81 160 Msc lateral displacement for e+- enabled << 82 compt: Total cross sections has a good parametrisation from 10 KeV to (100/Z) GeV 161 Msc lateral displacement for muons and hadrons << 83 Sampling according Klein-Nishina model 162 Urban msc model lateral displacement alg96 << 84 tables are built for gamma 163 Range factor for msc step limit for e+- << 85 Lambda tables from 100 eV to 100 GeV in 90 bins. 164 Range factor for msc step limit for muons/hadr << 86 165 Geometry factor for msc step limitation of e+- << 87 phot: Total cross sections from Sandia parametrisation. 166 Safety factor for msc step limit for e+- << 88 Sampling according PhotoElectric model 167 Skin parameter for msc step limitation of e+- << 89 168 Lambda limit for msc step limit for e+- << 90 msc: Model variant of multiple scattering for e- 169 Use Mott correction for e- scattering << 91 Lambda tables from 100 eV to 100 TeV in 120 bins. 170 Factor used for dynamic computation of angular << 92 LateralDisplacementFlag= 1 Skin= 0 171 limit between single and multiple scattering << 93 Boundary/stepping algorithm is active with RangeFactor= 0.02 Step limit type 1 172 Fixed angular limit between single << 94 173 and multiple scattering << 95 eIoni: tables are built for e- 174 Upper energy limit for e+- multiple scattering << 96 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 175 Type of electron single scattering model << 97 Lambda tables from threshold to 100 TeV in 120 bins. 176 Type of nuclear form-factor << 98 Delta cross sections and sampling from MollerBhabha model 177 Screening factor << 99 Good description from 1 KeV to 100 GeV. 178 ============================================== << 100 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 179 << 101 180 phot: for gamma SubType=12 BuildTable=0 << 102 eBrem: tables are built for e- 181 LambdaPrime table from 200 keV to 100 Te << 103 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 182 ===== EM models for the G4Region Defaul << 104 Lambda tables from threshold to 100 TeV in 120 bins. 183 LivermorePhElectric : Emin= 0 eV Emax= 1 << 105 Total cross sections and sampling from StandBrem model (based on the EEDL data library) 184 << 106 Good description from 1 KeV to 100 GeV, log scale extrapolation above 100 GeV. LPM flag 1 185 compt: for gamma SubType=13 BuildTable=1 << 107 186 Lambda table from 100 eV to 1 MeV, 7 bi << 108 eIoni: tables are built for e+ 187 LambdaPrime table from 1 MeV to 100 TeV << 109 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 188 ===== EM models for the G4Region Defaul << 110 Lambda tables from threshold to 100 TeV in 120 bins. 189 Klein-Nishina : Emin= 0 eV Emax= 1 << 111 Delta cross sections and sampling from MollerBhabha model 190 << 112 Good description from 1 KeV to 100 GeV. 191 conv: for gamma SubType=14 BuildTable=1 << 113 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 192 Lambda table from 1.022 MeV to 100 TeV, << 114 193 ===== EM models for the G4Region Defaul << 115 eBrem: tables are built for e+ 194 BetheHeitlerLPM : Emin= 0 eV Emax= 1 << 116 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 195 << 117 Lambda tables from threshold to 100 TeV in 120 bins. 196 Rayl: for gamma SubType=11 BuildTable=1 << 118 Total cross sections and sampling from StandBrem model (based on the EEDL data library) 197 Lambda table from 100 eV to 150 keV, 7 << 119 Good description from 1 KeV to 100 GeV, log scale extrapolation above 100 GeV. LPM flag 1 198 LambdaPrime table from 150 keV to 100 Te << 120 199 ===== EM models for the G4Region Defaul << 121 annihil: Sampling according eplus2gg model 200 LivermoreRayleigh : Emin= 0 eV Emax= 1 << 122 tables are built for e+ 201 << 123 Lambda tables from 100 eV to 100 TeV in 120 bins. 202 msc: for e- SubType= 10 << 124 203 ===== EM models for the G4Region Defaul << 125 msc: Model variant of multiple scattering for proton 204 UrbanMsc : Emin= 0 eV Emax= 1 << 126 Lambda tables from 100 eV to 100 TeV in 120 bins. 205 StepLim=UseSafety Rfact=0.04 Gfact=2 << 127 LateralDisplacementFlag= 1 Skin= 0 206 WentzelVIUni : Emin= 100 MeV Emax= 1 << 128 Boundary/stepping algorithm is active with RangeFactor= 0.02 Step limit type 1 207 StepLim=UseSafety Rfact=0.04 Gfact=2 << 129 208 << 130 hIoni: tables are built for proton 209 eIoni: for e- XStype:3 SubType=2 << 131 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 210 dE/dx and range tables from 100 eV to 1 << 132 Lambda tables from threshold to 100 TeV in 120 bins. 211 Lambda tables from threshold to 100 TeV, << 133 Scaling relation is used from proton dE/dx and range. 212 StepFunction=(0.2, 1 mm), integ: 3, fluc << 134 Delta cross sections and sampling from BetheBloch model for scaled energy > 2 MeV 213 ===== EM models for the G4Region Defaul << 135 Parametrisation from Bragg for protons below. 214 MollerBhabha : Emin= 0 eV Emax= 1 << 136 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 215 << 137 216 eBrem: for e- XStype:4 SubType=3 << 138 msc: Model variant of multiple scattering for GenericIon 217 dE/dx and range tables from 100 eV to 1 << 139 LateralDisplacementFlag= 0 Skin= 0 218 Lambda tables from threshold to 100 TeV, << 140 Boundary/stepping algorithm is active with RangeFactor= 0.2 Step limit type 1 219 LPM flag: 1 for E > 1 GeV, VertexHighEn << 141 220 ===== EM models for the G4Region Defaul << 142 hIoni: tables are built for anti_proton 221 eBremSB : Emin= 0 eV Emax= << 143 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 222 eBremLPM : Emin= 1 GeV Emax= 1 << 144 Lambda tables from threshold to 100 TeV in 120 bins. 223 << 145 Scaling relation is used from proton dE/dx and range. 224 CoulombScat: for e- XStype:1 SubType=1 BuildT << 146 Delta cross sections and sampling from BetheBloch model for scaled energy > 2 MeV 225 Lambda table from 100 MeV to 100 TeV, 7 << 147 Parametrisation from Bragg for protons below. 226 ThetaMin(p) < Theta(degree) < 180, pLimi << 148 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 227 ===== EM models for the G4Region Defaul << 149 228 eCoulombScattering : Emin= 100 MeV Emax= 1 << 150 msc: Model variant of multiple scattering for mu+ 229 << 151 Lambda tables from 100 eV to 100 TeV in 120 bins. 230 msc: for e+ SubType= 10 << 152 LateralDisplacementFlag= 1 Skin= 0 231 ===== EM models for the G4Region Defaul << 153 Boundary/stepping algorithm is active with RangeFactor= 0.02 Step limit type 1 232 UrbanMsc : Emin= 0 eV Emax= 1 << 154 233 StepLim=UseSafety Rfact=0.04 Gfact=2 << 155 muIoni: tables are built for mu+ 234 WentzelVIUni : Emin= 100 MeV Emax= 1 << 156 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 235 StepLim=UseSafety Rfact=0.04 Gfact=2 << 157 Lambda tables from threshold to 100 TeV in 120 bins. 236 << 158 Bether-Bloch model for E > 0.2 MeV, parametrisation of Bragg peak below, 237 eIoni: for e+ XStype:3 SubType=2 << 159 radiative corrections for E > 1 GeV 238 dE/dx and range tables from 100 eV to 1 << 160 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 239 Lambda tables from threshold to 100 TeV, << 161 240 StepFunction=(0.2, 1 mm), integ: 3, fluc << 162 muBrems: tables are built for mu+ 241 ===== EM models for the G4Region Defaul << 163 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 242 MollerBhabha : Emin= 0 eV Emax= 1 << 164 Lambda tables from threshold to 100 TeV in 120 bins. 243 << 165 Parametrised model 244 eBrem: for e+ XStype:4 SubType=3 << 166 245 dE/dx and range tables from 100 eV to 1 << 167 muPairProd: tables are built for mu+ 246 Lambda tables from threshold to 100 TeV, << 168 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 247 LPM flag: 1 for E > 1 GeV, VertexHighEn << 169 Lambda tables from threshold to 100 TeV in 120 bins. 248 ===== EM models for the G4Region Defaul << 170 Parametrised model 249 eBremSB : Emin= 0 eV Emax= << 171 250 eBremLPM : Emin= 1 GeV Emax= 1 << 172 muIoni: tables are built for mu- 251 << 173 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 252 annihil: for e+ XStype:2 SubType=5 AtRestMode << 174 Lambda tables from threshold to 100 TeV in 120 bins. 253 ===== EM models for the G4Region Defaul << 175 Bether-Bloch model for E > 0.2 MeV, parametrisation of Bragg peak below, 254 eplus2gg : Emin= 0 eV Emax= 1 << 176 radiative corrections for E > 1 GeV 255 << 177 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 256 CoulombScat: for e+ XStype:1 SubType=1 BuildT << 178 257 Lambda table from 100 MeV to 100 TeV, 7 << 179 muBrems: tables are built for mu- 258 ThetaMin(p) < Theta(degree) < 180, pLimi << 180 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 259 ===== EM models for the G4Region Defaul << 181 Lambda tables from threshold to 100 TeV in 120 bins. 260 eCoulombScattering : Emin= 100 MeV Emax= 1 << 182 Parametrised model 261 << 183 262 msc: for proton SubType= 10 << 184 muPairProd: tables are built for mu- 263 ===== EM models for the G4Region Defaul << 185 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 264 WentzelVIUni : Emin= 0 eV Emax= 1 << 186 Lambda tables from threshold to 100 TeV in 120 bins. 265 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 187 Parametrised model 266 << 188 267 hIoni: for proton XStype:3 SubType=2 << 189 hIoni: tables are built for pi+ 268 dE/dx and range tables from 100 eV to 1 << 190 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 269 Lambda tables from threshold to 100 TeV, << 191 Lambda tables from threshold to 100 TeV in 120 bins. 270 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 192 Scaling relation is used from proton dE/dx and range. 271 ===== EM models for the G4Region Defaul << 193 Delta cross sections and sampling from BetheBloch model for scaled energy > 0.297504 MeV 272 Bragg : Emin= 0 eV Emax= << 194 Parametrisation from Bragg for protons below. 273 BetheBloch : Emin= 2 MeV Emax= 1 << 195 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 274 << 196 275 hBrems: for proton XStype:1 SubType=3 << 197 msc: Model variant of multiple scattering for pi- 276 dE/dx and range tables from 100 eV to 1 << 198 Lambda tables from 100 eV to 100 TeV in 120 bins. 277 Lambda tables from threshold to 100 TeV, << 199 LateralDisplacementFlag= 1 Skin= 0 278 ===== EM models for the G4Region Defaul << 200 Boundary/stepping algorithm is active with RangeFactor= 0.02 Step limit type 1 279 hBrem : Emin= 0 eV Emax= 1 << 201 280 << 202 hIoni: tables are built for pi- 281 hPairProd: for proton XStype:1 SubType=4 << 203 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. 282 dE/dx and range tables from 100 eV to 1 << 204 Lambda tables from threshold to 100 TeV in 120 bins. 283 Lambda tables from threshold to 100 TeV, << 205 Scaling relation is used from proton dE/dx and range. 284 Sampling table 17x1001 from 7.50618 GeV << 206 Delta cross sections and sampling from BetheBloch model for scaled energy > 0.297504 MeV 285 ===== EM models for the G4Region Defaul << 207 Parametrisation from Bragg for protons below. 286 hPairProd : Emin= 0 eV Emax= 1 << 208 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 287 << 288 CoulombScat: for proton XStype:1 SubType=1 Bu << 289 Lambda table from threshold to 100 TeV, << 290 ThetaMin(p) < Theta(degree) < 180, pLimi << 291 ===== EM models for the G4Region Defaul << 292 eCoulombScattering : Emin= 0 eV Emax= 1 << 293 << 294 msc: for GenericIon SubType= 10 << 295 ===== EM models for the G4Region Defaul << 296 UrbanMsc : Emin= 0 eV Emax= 1 << 297 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 298 << 299 ionIoni: for GenericIon XStype:3 SubType=2 << 300 dE/dx and range tables from 100 eV to 1 << 301 Lambda tables from threshold to 100 TeV, << 302 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 303 ===== EM models for the G4Region Defaul << 304 Bragg : Emin= 0 eV Emax= << 305 BetheBloch : Emin= 2 MeV Emax= 1 << 306 << 307 msc: for alpha SubType= 10 << 308 ===== EM models for the G4Region Defaul << 309 UrbanMsc : Emin= 0 eV Emax= 1 << 310 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 311 << 312 ionIoni: for alpha XStype:3 SubType=2 << 313 dE/dx and range tables from 100 eV to 1 << 314 Lambda tables from threshold to 100 TeV, << 315 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 316 ===== EM models for the G4Region Defaul << 317 BraggIon : Emin= 0 eV Emax=7.9 << 318 BetheBloch : Emin=7.9452 MeV Emax= << 319 << 320 msc: for anti_proton SubType= 10 << 321 ===== EM models for the G4Region Defaul << 322 WentzelVIUni : Emin= 0 eV Emax= 1 << 323 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 324 << 325 hIoni: for anti_proton XStype:3 SubType=2 << 326 dE/dx and range tables from 100 eV to 1 << 327 Lambda tables from threshold to 100 TeV, << 328 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 329 ===== EM models for the G4Region Defaul << 330 ICRU73QO : Emin= 0 eV Emax= << 331 BetheBloch : Emin= 2 MeV Emax= 1 << 332 << 333 hBrems: for anti_proton XStype:1 SubType=3 << 334 dE/dx and range tables from 100 eV to 1 << 335 Lambda tables from threshold to 100 TeV, << 336 ===== EM models for the G4Region Defaul << 337 hBrem : Emin= 0 eV Emax= 1 << 338 << 339 hPairProd: for anti_proton XStype:1 SubType << 340 dE/dx and range tables from 100 eV to 1 << 341 Lambda tables from threshold to 100 TeV, << 342 Sampling table 17x1001 from 7.50618 GeV << 343 ===== EM models for the G4Region Defaul << 344 hPairProd : Emin= 0 eV Emax= 1 << 345 << 346 CoulombScat: for anti_proton XStype:1 SubType << 347 Lambda table from threshold to 100 TeV, << 348 ThetaMin(p) < Theta(degree) < 180, pLimi << 349 ===== EM models for the G4Region Defaul << 350 eCoulombScattering : Emin= 0 eV Emax= 1 << 351 << 352 msc: for kaon+ SubType= 10 << 353 ===== EM models for the G4Region Defaul << 354 WentzelVIUni : Emin= 0 eV Emax= 1 << 355 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 356 << 357 hIoni: for kaon+ XStype:3 SubType=2 << 358 dE/dx and range tables from 100 eV to 1 << 359 Lambda tables from threshold to 100 TeV, << 360 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 361 ===== EM models for the G4Region Defaul << 362 Bragg : Emin= 0 eV Emax=1.0 << 363 BetheBloch : Emin=1.05231 MeV Emax= << 364 << 365 hBrems: for kaon+ XStype:1 SubType=3 << 366 dE/dx and range tables from 100 eV to 1 << 367 Lambda tables from threshold to 100 TeV, << 368 ===== EM models for the G4Region Defaul << 369 hBrem : Emin= 0 eV Emax= 1 << 370 << 371 hPairProd: for kaon+ XStype:1 SubType=4 << 372 dE/dx and range tables from 100 eV to 1 << 373 Lambda tables from threshold to 100 TeV, << 374 Sampling table 18x1001 from 3.94942 GeV << 375 ===== EM models for the G4Region Defaul << 376 hPairProd : Emin= 0 eV Emax= 1 << 377 << 378 CoulombScat: for kaon+ XStype:1 SubType=1 Bui << 379 Lambda table from threshold to 100 TeV, << 380 ThetaMin(p) < Theta(degree) < 180, pLimi << 381 ===== EM models for the G4Region Defaul << 382 eCoulombScattering : Emin= 0 eV Emax= 1 << 383 << 384 msc: for kaon- SubType= 10 << 385 ===== EM models for the G4Region Defaul << 386 WentzelVIUni : Emin= 0 eV Emax= 1 << 387 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 388 << 389 hIoni: for kaon- XStype:3 SubType=2 << 390 dE/dx and range tables from 100 eV to 1 << 391 Lambda tables from threshold to 100 TeV, << 392 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 393 ===== EM models for the G4Region Defaul << 394 ICRU73QO : Emin= 0 eV Emax=1.0 << 395 BetheBloch : Emin=1.05231 MeV Emax= << 396 << 397 hBrems: for kaon- XStype:1 SubType=3 << 398 dE/dx and range tables from 100 eV to 1 << 399 Lambda tables from threshold to 100 TeV, << 400 ===== EM models for the G4Region Defaul << 401 hBrem : Emin= 0 eV Emax= 1 << 402 << 403 hPairProd: for kaon- XStype:1 SubType=4 << 404 dE/dx and range tables from 100 eV to 1 << 405 Lambda tables from threshold to 100 TeV, << 406 Sampling table 18x1001 from 3.94942 GeV << 407 ===== EM models for the G4Region Defaul << 408 hPairProd : Emin= 0 eV Emax= 1 << 409 << 410 CoulombScat: for kaon- XStype:1 SubType=1 Bui << 411 Used Lambda table of kaon+ << 412 ThetaMin(p) < Theta(degree) < 180, pLimi << 413 ===== EM models for the G4Region Defaul << 414 eCoulombScattering : Emin= 0 eV Emax= 1 << 415 << 416 msc: for mu+ SubType= 10 << 417 ===== EM models for the G4Region Defaul << 418 WentzelVIUni : Emin= 0 eV Emax= 1 << 419 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 420 << 421 muIoni: for mu+ XStype:3 SubType=2 << 422 dE/dx and range tables from 100 eV to 1 << 423 Lambda tables from threshold to 100 TeV, << 424 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 425 ===== EM models for the G4Region Defaul << 426 Bragg : Emin= 0 eV Emax= 2 << 427 MuBetheBloch : Emin= 200 keV Emax= 1 << 428 << 429 muBrems: for mu+ XStype:1 SubType=3 << 430 dE/dx and range tables from 100 eV to 1 << 431 Lambda tables from threshold to 100 TeV, << 432 ===== EM models for the G4Region Defaul << 433 MuBrem : Emin= 0 eV Emax= 1 << 434 << 435 muPairProd: for mu+ XStype:1 SubType=4 << 436 dE/dx and range tables from 100 eV to 1 << 437 Lambda tables from threshold to 100 TeV, << 438 Sampling table 21x1001 from 0.85 GeV to << 439 ===== EM models for the G4Region Defaul << 440 muPairProd : Emin= 0 eV Emax= 1 << 441 << 442 CoulombScat: for mu+ XStype:1 SubType=1 Build << 443 Lambda table from threshold to 100 TeV, << 444 ThetaMin(p) < Theta(degree) < 180, pLimi << 445 ===== EM models for the G4Region Defaul << 446 eCoulombScattering : Emin= 0 eV Emax= 1 << 447 << 448 msc: for mu- SubType= 10 << 449 ===== EM models for the G4Region Defaul << 450 WentzelVIUni : Emin= 0 eV Emax= 1 << 451 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 452 << 453 muIoni: for mu- XStype:3 SubType=2 << 454 dE/dx and range tables from 100 eV to 1 << 455 Lambda tables from threshold to 100 TeV, << 456 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 457 ===== EM models for the G4Region Defaul << 458 ICRU73QO : Emin= 0 eV Emax= 2 << 459 MuBetheBloch : Emin= 200 keV Emax= 1 << 460 << 461 muBrems: for mu- XStype:1 SubType=3 << 462 dE/dx and range tables from 100 eV to 1 << 463 Lambda tables from threshold to 100 TeV, << 464 ===== EM models for the G4Region Defaul << 465 MuBrem : Emin= 0 eV Emax= 1 << 466 << 467 muPairProd: for mu- XStype:1 SubType=4 << 468 dE/dx and range tables from 100 eV to 1 << 469 Lambda tables from threshold to 100 TeV, << 470 Sampling table 21x1001 from 0.85 GeV to << 471 ===== EM models for the G4Region Defaul << 472 muPairProd : Emin= 0 eV Emax= 1 << 473 << 474 CoulombScat: for mu- XStype:1 SubType=1 Build << 475 Used Lambda table of mu+ << 476 ThetaMin(p) < Theta(degree) < 180, pLimi << 477 ===== EM models for the G4Region Defaul << 478 eCoulombScattering : Emin= 0 eV Emax= 1 << 479 << 480 msc: for pi+ SubType= 10 << 481 ===== EM models for the G4Region Defaul << 482 WentzelVIUni : Emin= 0 eV Emax= 1 << 483 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 484 << 485 hIoni: for pi+ XStype:3 SubType=2 << 486 dE/dx and range tables from 100 eV to 1 << 487 Lambda tables from threshold to 100 TeV, << 488 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 489 ===== EM models for the G4Region Defaul << 490 Bragg : Emin= 0 eV Emax=297 << 491 BetheBloch : Emin=297.505 keV Emax= << 492 << 493 hBrems: for pi+ XStype:1 SubType=3 << 494 dE/dx and range tables from 100 eV to 1 << 495 Lambda tables from threshold to 100 TeV, << 496 ===== EM models for the G4Region Defaul << 497 hBrem : Emin= 0 eV Emax= 1 << 498 << 499 hPairProd: for pi+ XStype:1 SubType=4 << 500 dE/dx and range tables from 100 eV to 1 << 501 Lambda tables from threshold to 100 TeV, << 502 Sampling table 20x1001 from 1.11656 GeV << 503 ===== EM models for the G4Region Defaul << 504 hPairProd : Emin= 0 eV Emax= 1 << 505 << 506 CoulombScat: for pi+ XStype:1 SubType=1 Build << 507 Lambda table from threshold to 100 TeV, << 508 ThetaMin(p) < Theta(degree) < 180, pLimi << 509 ===== EM models for the G4Region Defaul << 510 eCoulombScattering : Emin= 0 eV Emax= 1 << 511 << 512 msc: for pi- SubType= 10 << 513 ===== EM models for the G4Region Defaul << 514 WentzelVIUni : Emin= 0 eV Emax= 1 << 515 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 516 << 517 hIoni: for pi- XStype:3 SubType=2 << 518 dE/dx and range tables from 100 eV to 1 << 519 Lambda tables from threshold to 100 TeV, << 520 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 521 ===== EM models for the G4Region Defaul << 522 ICRU73QO : Emin= 0 eV Emax=297 << 523 BetheBloch : Emin=297.505 keV Emax= << 524 << 525 hBrems: for pi- XStype:1 SubType=3 << 526 dE/dx and range tables from 100 eV to 1 << 527 Lambda tables from threshold to 100 TeV, << 528 ===== EM models for the G4Region Defaul << 529 hBrem : Emin= 0 eV Emax= 1 << 530 << 531 hPairProd: for pi- XStype:1 SubType=4 << 532 dE/dx and range tables from 100 eV to 1 << 533 Lambda tables from threshold to 100 TeV, << 534 Sampling table 20x1001 from 1.11656 GeV << 535 ===== EM models for the G4Region Defaul << 536 hPairProd : Emin= 0 eV Emax= 1 << 537 << 538 CoulombScat: for pi- XStype:1 SubType=1 Build << 539 Used Lambda table of pi+ << 540 ThetaMin(p) < Theta(degree) < 180, pLimi << 541 ===== EM models for the G4Region Defaul << 542 eCoulombScattering : Emin= 0 eV Emax= 1 << 543 << 544 ============================================== << 545 HADRONIC PROCESSES SUMMARY ( << 546 ---------------------------------------------- << 547 Hadronic Processes << 548 Process: hadElastic << 549 Model: hElasticCHIPS: 0 eV << 550 Cr_sctns: G4NeutronElasticXS: 0 eV << 551 Process: neutronInelastic << 552 Model: FTFP: 3 Ge << 553 Model: BertiniCascade: 0 eV << 554 Cr_sctns: G4NeutronInelasticXS: 0 eV << 555 Process: nCapture << 556 Model: nRadCapture: 0 eV << 557 Cr_sctns: G4NeutronCaptureXS: 0 eV << 558 Process: nKiller << 559 ---------------------------------------------- << 560 Hadronic Processes << 561 Process: hadElastic << 562 Model: hElasticLHEP: 0 eV << 563 Cr_sctns: Glauber-Gribov: 0 eV << 564 Process: B-Inelastic << 565 Model: FTFP: 0 eV << 566 Cr_sctns: Glauber-Gribov: 0 eV << 567 ---------------------------------------------- << 568 Hadronic Processes << 569 Process: hadElastic << 570 Model: hElasticLHEP: 0 eV << 571 Cr_sctns: Glauber-Gribov: 0 eV << 572 Process: D-Inelastic << 573 Model: FTFP: 0 eV << 574 Cr_sctns: Glauber-Gribov: 0 eV << 575 ---------------------------------------------- << 576 Hadronic Processes << 577 Process: ionInelastic << 578 Model: Binary Light Ion Cascade: 0 eV << 579 Model: FTFP: 3 Ge << 580 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 581 ---------------------------------------------- << 582 Hadronic Processes << 583 Process: hadElastic << 584 Model: hElasticLHEP: 0 eV << 585 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 586 Process: He3Inelastic << 587 Model: Binary Light Ion Cascade: 0 eV << 588 Model: FTFP: 3 Ge << 589 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 590 ---------------------------------------------- << 591 Hadronic Processes << 592 Process: hadElastic << 593 Model: hElasticLHEP: 0 eV << 594 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 595 Process: alphaInelastic << 596 Model: Binary Light Ion Cascade: 0 eV << 597 Model: FTFP: 3 Ge << 598 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 599 ---------------------------------------------- << 600 Hadronic Processes << 601 Process: hadElastic << 602 Model: hElasticLHEP: 0 eV << 603 Model: AntiAElastic: 100 << 604 Cr_sctns: AntiAGlauber: 0 eV << 605 Process: anti_He3Inelastic << 606 Model: FTFP: 0 eV << 607 Cr_sctns: AntiAGlauber: 0 eV << 608 Process: hFritiofCaptureAtRest << 609 ---------------------------------------------- << 610 Hadronic Processes << 611 Process: hadElastic << 612 Model: hElasticLHEP: 0 eV << 613 Model: AntiAElastic: 100 << 614 Cr_sctns: AntiAGlauber: 0 eV << 615 Process: anti_alphaInelastic << 616 Model: FTFP: 0 eV << 617 Cr_sctns: AntiAGlauber: 0 eV << 618 Process: hFritiofCaptureAtRest << 619 ---------------------------------------------- << 620 Hadronic Processes << 621 Process: hadElastic << 622 Model: hElasticLHEP: 0 eV << 623 Model: AntiAElastic: 100 << 624 Cr_sctns: AntiAGlauber: 0 eV << 625 Process: anti_deuteronInelastic << 626 Model: FTFP: 0 eV << 627 Cr_sctns: AntiAGlauber: 0 eV << 628 Process: hFritiofCaptureAtRest << 629 ---------------------------------------------- << 630 Hadronic Processes << 631 Process: hFritiofCaptureAtRest << 632 ---------------------------------------------- << 633 Hadronic Processes << 634 Process: hadElastic << 635 Model: hElasticLHEP: 0 eV << 636 Cr_sctns: Glauber-Gribov: 0 eV << 637 Process: anti_lambdaInelastic << 638 Model: FTFP: 0 eV << 639 Cr_sctns: Glauber-Gribov: 0 eV << 640 Process: hFritiofCaptureAtRest << 641 ---------------------------------------------- << 642 Hadronic Processes << 643 Process: hadElastic << 644 Model: hElasticLHEP: 0 eV << 645 Model: AntiAElastic: 100 << 646 Cr_sctns: AntiAGlauber: 0 eV << 647 Process: anti_neutronInelastic << 648 Model: FTFP: 0 eV << 649 Cr_sctns: AntiAGlauber: 0 eV << 650 Process: hFritiofCaptureAtRest << 651 ---------------------------------------------- << 652 Hadronic Processes << 653 Process: hadElastic << 654 Model: hElasticLHEP: 0 eV << 655 Model: AntiAElastic: 100 << 656 Cr_sctns: AntiAGlauber: 0 eV << 657 Process: anti_protonInelastic << 658 Model: FTFP: 0 eV << 659 Cr_sctns: AntiAGlauber: 0 eV << 660 Process: hFritiofCaptureAtRest << 661 ---------------------------------------------- << 662 Hadronic Processes << 663 Process: hadElastic << 664 Model: hElasticLHEP: 0 eV << 665 Model: AntiAElastic: 100 << 666 Cr_sctns: AntiAGlauber: 0 eV << 667 Process: anti_tritonInelastic << 668 Model: FTFP: 0 eV << 669 Cr_sctns: AntiAGlauber: 0 eV << 670 Process: hFritiofCaptureAtRest << 671 ---------------------------------------------- << 672 Hadronic Processes << 673 Process: hadElastic << 674 Model: hElasticLHEP: 0 eV << 675 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 676 Process: dInelastic << 677 Model: Binary Light Ion Cascade: 0 eV << 678 Model: FTFP: 3 Ge << 679 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 680 ---------------------------------------------- << 681 Hadronic Processes << 682 Process: positronNuclear << 683 Model: G4ElectroVDNuclearModel: 0 eV << 684 Cr_sctns: ElectroNuclearXS: 0 eV << 685 ---------------------------------------------- << 686 Hadronic Processes << 687 Process: electronNuclear << 688 Model: G4ElectroVDNuclearModel: 0 eV << 689 Cr_sctns: ElectroNuclearXS: 0 eV << 690 ---------------------------------------------- << 691 Hadronic Processes << 692 Process: photonNuclear << 693 Model: GammaNPreco: 0 eV << 694 Model: BertiniCascade: 199 << 695 Model: TheoFSGenerator: 3 Ge << 696 Cr_sctns: GammaNuclearXS: 0 eV << 697 ---------------------------------------------- << 698 Hadronic Processes << 699 Process: hadElastic << 700 Model: hElasticLHEP: 0 eV << 701 Cr_sctns: Glauber-Gribov: 0 eV << 702 Process: kaon+Inelastic << 703 Model: FTFP: 3 Ge << 704 Model: BertiniCascade: 0 eV << 705 Cr_sctns: Glauber-Gribov: 0 eV << 706 ---------------------------------------------- << 707 Hadronic Processes << 708 Process: hadElastic << 709 Model: hElasticLHEP: 0 eV << 710 Cr_sctns: Glauber-Gribov: 0 eV << 711 Process: kaon-Inelastic << 712 Model: FTFP: 3 Ge << 713 Model: BertiniCascade: 0 eV << 714 Cr_sctns: Glauber-Gribov: 0 eV << 715 Process: hBertiniCaptureAtRest << 716 ---------------------------------------------- << 717 Hadronic Processes << 718 Process: hadElastic << 719 Model: hElasticLHEP: 0 eV << 720 Cr_sctns: Glauber-Gribov: 0 eV << 721 Process: lambdaInelastic << 722 Model: FTFP: 3 Ge << 723 Model: BertiniCascade: 0 eV << 724 Cr_sctns: Glauber-Gribov: 0 eV << 725 ---------------------------------------------- << 726 Hadronic Processes << 727 Process: muonNuclear << 728 Model: G4MuonVDNuclearModel: 0 eV << 729 Cr_sctns: KokoulinMuonNuclearXS: 0 eV << 730 ---------------------------------------------- << 731 Hadronic Processes << 732 Process: muonNuclear << 733 Model: G4MuonVDNuclearModel: 0 eV << 734 Cr_sctns: KokoulinMuonNuclearXS: 0 eV << 735 Process: muMinusCaptureAtRest << 736 ---------------------------------------------- << 737 Hadronic Processes << 738 Process: hadElastic << 739 Model: hElasticGlauber: 0 eV << 740 Cr_sctns: BarashenkovGlauberGribov: 0 eV << 741 Process: pi+Inelastic << 742 Model: FTFP: 3 Ge << 743 Model: BertiniCascade: 0 eV << 744 Cr_sctns: BarashenkovGlauberGribov: 0 eV << 745 ---------------------------------------------- << 746 Hadronic Processes << 747 Process: hadElastic << 748 Model: hElasticGlauber: 0 eV << 749 Cr_sctns: BarashenkovGlauberGribov: 0 eV << 750 Process: pi-Inelastic << 751 Model: FTFP: 3 Ge << 752 Model: BertiniCascade: 0 eV << 753 Cr_sctns: BarashenkovGlauberGribov: 0 eV << 754 Process: hBertiniCaptureAtRest << 755 ---------------------------------------------- << 756 Hadronic Processes << 757 Process: hadElastic << 758 Model: hElasticCHIPS: 0 eV << 759 Cr_sctns: BarashenkovGlauberGribov: 0 eV << 760 Process: protonInelastic << 761 Model: FTFP: 3 Ge << 762 Model: BertiniCascade: 0 eV << 763 Cr_sctns: BarashenkovGlauberGribov: 0 eV << 764 ---------------------------------------------- << 765 Hadronic Processes << 766 Process: hadElastic << 767 Model: hElasticLHEP: 0 eV << 768 Cr_sctns: Glauber-Gribov: 0 eV << 769 Process: sigma-Inelastic << 770 Model: FTFP: 3 Ge << 771 Model: BertiniCascade: 0 eV << 772 Cr_sctns: Glauber-Gribov: 0 eV << 773 Process: hBertiniCaptureAtRest << 774 ---------------------------------------------- << 775 Hadronic Processes << 776 Process: hadElastic << 777 Model: hElasticLHEP: 0 eV << 778 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 779 Process: tInelastic << 780 Model: Binary Light Ion Cascade: 0 eV << 781 Model: FTFP: 3 Ge << 782 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 783 ============================================== << 784 ====== Geant4 Native Pre-compound Model << 785 ============================================== << 786 Type of pre-compound inverse x-section << 787 Pre-compound model active << 788 Pre-compound excitation low energy << 789 Pre-compound excitation high energy << 790 Angular generator for pre-compound model << 791 Use NeverGoBack option for pre-compound model << 792 Use SoftCutOff option for pre-compound model << 793 Use CEM transitions for pre-compound model << 794 Use GNASH transitions for pre-compound model << 795 Use HETC submodel for pre-compound model << 796 ============================================== << 797 ====== Nuclear De-excitation Module Para << 798 ============================================== << 799 Type of de-excitation inverse x-section << 800 Type of de-excitation factory << 801 Number of de-excitation channels << 802 Min excitation energy << 803 Min energy per nucleon for multifragmentation << 804 Limit excitation energy for Fermi BreakUp << 805 Level density (1/MeV) << 806 Use simple level density model << 807 Use discrete excitation energy of the residual << 808 Time limit for long lived isomeres << 809 Isomer production flag << 810 Internal e- conversion flag << 811 Store e- internal conversion data << 812 Correlated gamma emission flag << 813 Max 2J for sampling of angular correlations << 814 ============================================== << 815 ++ ConcreteSD/Collisions id 0 209 ++ ConcreteSD/Collisions id 0 816 ++ ConcreteSD/CollWeight id 1 210 ++ ConcreteSD/CollWeight id 1 817 ++ ConcreteSD/Population id 2 211 ++ ConcreteSD/Population id 2 818 ++ ConcreteSD/TrackEnter id 3 212 ++ ConcreteSD/TrackEnter id 3 819 ++ ConcreteSD/SL id 4 213 ++ ConcreteSD/SL id 4 820 ++ ConcreteSD/SLW id 5 214 ++ ConcreteSD/SLW id 5 821 ++ ConcreteSD/SLWE id 6 215 ++ ConcreteSD/SLWE id 6 822 ++ ConcreteSD/SLW_V id 7 216 ++ ConcreteSD/SLW_V id 7 823 ++ ConcreteSD/SLWE_V id 8 217 ++ ConcreteSD/SLWE_V id 8 824 ### Run 0 start. 218 ### Run 0 start. 825 ###### EndOfRunAction 219 ###### EndOfRunAction 826 << 827 --------------------End of Global Run--------- << 828 Number of event processed : 100 << 829 ============================================== 220 ============================================================= >> 221 Number of event processed : 100 830 ============================================== 222 ============================================================= 831 Volume | Tr.Entering | Population 223 Volume | Tr.Entering | Population | Collisions | Coll*WGT | NumWGTedE | FluxWGTedE | Av.Tr.WGT | SL | SLW | SLW_v | SLWE | SLWE_v | 832 cell_00 | 32 | 127 << 224 cell_00 | 7 | 106 | 0 | 0 | 4.8570632 | 6.394919 | 1 | 1113.0539 | 1113.0539 | 39.997852 | 7117.8892 | 194.27209 | 833 cell_01 | 139 | 179 << 225 cell_01 | 107 | 126 | 160 | 160 | 7.245862 | 8.6524027 | 1 | 12127.588 | 12127.588 | 350.85037 | 104932.77 | 2542.2133 | 834 cell_02 | 174 | 270 << 226 cell_02 | 72 | 171 | 216 | 108 | 6.1900176 | 8.0820959 | 0.5 | 16630.552 | 8315.2759 | 269.99556 | 67204.857 | 1671.2773 | 835 cell_03 | 229 | 334 << 227 cell_03 | 84 | 188 | 199 | 49.75 | 7.3393396 | 8.7216156 | 0.25 | 19277.93 | 4819.4826 | 139.36705 | 42033.675 | 1022.8621 | 836 cell_04 | 254 | 381 << 228 cell_04 | 107 | 249 | 314 | 39.25 | 6.2237328 | 8.0359115 | 0.125 | 25982.232 | 3247.779 | 105.22726 | 26098.865 | 654.90636 | 837 cell_05 | 291 | 420 << 229 cell_05 | 119 | 274 | 350 | 21.875 | 5.8304001 | 7.7473901 | 0.0625 | 29050.14 | 1815.6337 | 61.166969 | 14066.423 | 356.6279 | 838 cell_06 | 327 | 472 << 230 cell_06 | 138 | 314 | 483 | 15.09375 | 5.061069 | 7.4461955 | 0.03125 | 33710.715 | 1053.4598 | 39.851437 | 7844.2679 | 201.69087 | 839 cell_07 | 296 | 437 << 231 cell_07 | 138 | 312 | 458 | 7.15625 | 5.2852313 | 7.2039361 | 0.015625 | 35495.11 | 554.6111 | 19.756546 | 3995.3829 | 104.41791 | 840 cell_08 | 262 | 372 << 232 cell_08 | 170 | 390 | 654 | 5.109375 | 4.9015271 | 6.698322 | 0.0078125 | 45936.052 | 358.8754 | 13.198783 | 2403.863 | 64.694191 | 841 cell_09 | 260 | 356 << 233 cell_09 | 186 | 431 | 655 | 2.5585938 | 4.5999796 | 6.2994019 | 0.00390625 | 45880.729 | 179.2216 | 6.788147 | 1128.9889 | 31.225338 | 842 cell_10 | 229 | 331 << 234 cell_10 | 205 | 461 | 802 | 1.5664062 | 4.0725245 | 5.9959975 | 0.001953125 | 52001.934 | 101.56628 | 4.2218939 | 608.99115 | 17.193766 | 843 cell_11 | 186 | 270 << 235 cell_11 | 232 | 512 | 857 | 0.83691406 | 0.75577079 | 5.6832231 | 0.0009765625 | 58106.748 | 56.744871 | 12.259625 | 322.49376 | 9.2654668 | 844 cell_12 | 154 | 220 << 236 cell_12 | 271 | 584 | 1056 | 0.515625 | 3.0370662 | 5.2506271 | 0.00048828125 | 67467.473 | 32.943102 | 1.6912862 | 172.97195 | 5.136548 | 845 cell_13 | 123 | 185 << 237 cell_13 | 311 | 675 | 1216 | 0.296875 | 3.2604017 | 4.9243062 | 0.00024414062 | 75024.488 | 18.316525 | 0.84787155 | 90.196179 | 2.7644018 | 846 cell_14 | 109 | 157 << 238 cell_14 | 329 | 758 | 1419 | 0.17321777 | 3.4451656 | 4.769336 | 0.00012207031 | 84584.636 | 10.325273 | 0.4478539 | 49.244695 | 1.5429309 | 847 cell_15 | 79 | 112 << 239 cell_15 | 364 | 783 | 1540 | 0.093994141 | 0.40940195 | 4.4470643 | 6.1035156e-05 | 91736.425 | 5.599147 | 1.9622683 | 24.899767 | 0.80335646 | 848 cell_16 | 68 | 99 << 240 cell_16 | 398 | 858 | 1703 | 0.051971436 | 0.25175739 | 4.2259526 | 3.0517578e-05 | 98797.986 | 3.0150753 | 1.6715126 | 12.741565 | 0.42081564 | 849 cell_17 | 53 | 82 << 241 cell_17 | 413 | 932 | 1881 | 0.028701782 | 2.8791199 | 4.1895463 | 1.5258789e-05 | 107543.85 | 1.6409889 | 0.079050326 | 6.874999 | 0.22759537 | 850 cell_18 | 32 | 57 << 242 cell_18 | 383 | 889 | 1706 | 0.013015747 | 2.8292119 | 4.1307913 | 7.6293945e-06 | 100556.11 | 0.76718227 | 0.037287182 | 3.1690698 | 0.10549334 | 851 cell_19 | 25 | 25 << 243 cell_19 | 440 | 440 | 0 | 0 | 2.8202313 | 4.1847543 | 7.6293945e-06 | 63345.904 | 0.48329089 | 0.023651264 | 2.0224537 | 0.066702034 | 852 ============================================= 244 ============================================= >> 245 === G4ProcessPlacer::RemoveProcess: for: neutron >> 246 ProcessName: ImportanceProcess, will be removed! >> 247 The initial Vectors: >> 248 GPIL Vector: >> 249 Decay >> 250 HadronCapture >> 251 HadronFission >> 252 inelastic >> 253 HadronElastic >> 254 ImportanceProcess >> 255 Transportation >> 256 DoIt Vector: >> 257 Transportation >> 258 ImportanceProcess >> 259 HadronElastic >> 260 inelastic >> 261 HadronFission >> 262 HadronCapture >> 263 Decay >> 264 The final Vectors: >> 265 GPIL Vector: >> 266 Decay >> 267 HadronCapture >> 268 HadronFission >> 269 inelastic >> 270 HadronElastic >> 271 Transportation >> 272 DoIt Vector: >> 273 Transportation >> 274 HadronElastic >> 275 inelastic >> 276 HadronFission >> 277 HadronCapture >> 278 Decay >> 279 ================================================