Geant4 Cross Reference |
1 Environment variable "G4FORCE_RUN_MANAGER_TYPE << 2 1 3 ###################################### << 2 ************************************************************* 4 !!! WARNING - FPE detection is activat << 3 Geant4 version Name: geant4-08-02-patch-01-ref (23-February-2007) 5 ###################################### << 4 Copyright : Geant4 Collaboration 6 << 5 Reference : NIM A 506 (2003), 250-303 7 << 6 WWW : http://cern.ch/geant4 8 ################################ << 7 ************************************************************* 9 !!! G4Backtrace is activated !!! << 8 10 ################################ << 9 B01PhysicsList::SetCuts:CutLength : 1 (mm) 11 << 10 Going to assign importance: 1, to volume: cell_01 12 << 11 Going to assign importance: 2, to volume: cell_02 13 ********************************************** << 12 Going to assign importance: 4, to volume: cell_03 14 Geant4 version Name: geant4-11-03-ref-00 ( << 13 Going to assign importance: 8, to volume: cell_04 15 Copyright : Geant4 Coll << 14 Going to assign importance: 16, to volume: cell_05 16 References : NIM A 506 ( << 15 Going to assign importance: 32, to volume: cell_06 17 : IEEE-TNS 53 << 16 Going to assign importance: 64, to volume: cell_07 18 : NIM A 835 ( << 17 Going to assign importance: 128, to volume: cell_08 19 WWW : http://gean << 18 Going to assign importance: 256, to volume: cell_09 20 ********************************************** << 19 Going to assign importance: 512, to volume: cell_10 21 << 20 Going to assign importance: 1024, to volume: cell_11 22 <<< Geant4 Physics List simulation engine: FTF << 21 Going to assign importance: 2048, to volume: cell_12 23 << 22 Going to assign importance: 4096, to volume: cell_13 24 << 23 Going to assign importance: 8192, to volume: cell_14 25 hInelastic FTFP_BERT : threshold between BERT << 24 Going to assign importance: 16384, to volume: cell_15 26 for pions : 3 to 6 GeV << 25 Going to assign importance: 32768, to volume: cell_16 27 for kaons : 3 to 6 GeV << 26 Going to assign importance: 65536, to volume: cell_17 28 for proton : 3 to 6 GeV << 27 Going to assign importance: 131072, to volume: cell_18 29 for neutron : 3 to 6 GeV << 30 << 31 ### Adding tracking cuts for neutron TimeCut( << 32 paraFlag: 0 << 33 Preparing Importance Sampling << 34 G4IStore:: Creating new MASS IStore << 35 G4GeometrySampler:: preparing importance sampl << 36 G4ImportanceConfigurator:: setting world name << 37 G4ImportanceConfigurator:: entering importance << 38 ### G4ImportanceProcess:: Creating << 39 G4ImportanceProcess:: importance process paraf << 40 === G4ProcessPlacer::AddProcessAsSecondDoIt: f 28 === G4ProcessPlacer::AddProcessAsSecondDoIt: for: neutron 41 Modifying Process Order for ProcessName: Imp << 29 ProcessName: MScoreProcess 42 The initial AlongStep Vectors: << 30 The initial Vectors: 43 GPIL Vector: 31 GPIL Vector: >> 32 Decay >> 33 HadronCapture >> 34 HadronFission >> 35 inelastic >> 36 HadronElastic 44 Transportation 37 Transportation 45 DoIt Vector: 38 DoIt Vector: 46 Transportation 39 Transportation 47 The initial PostStep Vectors: << 40 HadronElastic >> 41 inelastic >> 42 HadronFission >> 43 HadronCapture >> 44 Decay >> 45 The final Vectors: 48 GPIL Vector: 46 GPIL Vector: 49 nKiller << 50 nCapture << 51 neutronInelastic << 52 hadElastic << 53 Decay 47 Decay >> 48 HadronCapture >> 49 HadronFission >> 50 inelastic >> 51 HadronElastic >> 52 MScoreProcess 54 Transportation 53 Transportation 55 DoIt Vector: 54 DoIt Vector: 56 Transportation 55 Transportation >> 56 MScoreProcess >> 57 HadronElastic >> 58 inelastic >> 59 HadronFission >> 60 HadronCapture 57 Decay 61 Decay 58 hadElastic << 62 ================================================ 59 neutronInelastic << 63 === G4ProcessPlacer::AddProcessAsSecondDoIt: for: neutron 60 nCapture << 64 ProcessName: MassImportanceProcess 61 nKiller << 65 The initial Vectors: 62 The final AlongStep Vectors: << 63 GPIL Vector: 66 GPIL Vector: 64 ImportanceProcess << 67 Decay >> 68 HadronCapture >> 69 HadronFission >> 70 inelastic >> 71 HadronElastic >> 72 MScoreProcess 65 Transportation 73 Transportation 66 DoIt Vector: 74 DoIt Vector: 67 Transportation 75 Transportation 68 ImportanceProcess << 76 MScoreProcess 69 The final PostStep Vectors: << 77 HadronElastic >> 78 inelastic >> 79 HadronFission >> 80 HadronCapture >> 81 Decay >> 82 The final Vectors: 70 GPIL Vector: 83 GPIL Vector: 71 nKiller << 72 nCapture << 73 neutronInelastic << 74 hadElastic << 75 Decay 84 Decay 76 ImportanceProcess << 85 HadronCapture >> 86 HadronFission >> 87 inelastic >> 88 HadronElastic >> 89 MScoreProcess >> 90 MassImportanceProcess 77 Transportation 91 Transportation 78 DoIt Vector: 92 DoIt Vector: 79 Transportation 93 Transportation 80 ImportanceProcess << 94 MassImportanceProcess >> 95 MScoreProcess >> 96 HadronElastic >> 97 inelastic >> 98 HadronFission >> 99 HadronCapture >> 100 Decay >> 101 ================================================ >> 102 >> 103 conv: Total cross sections has a good parametrisation from 1.5 MeV to 100 GeV for all Z; >> 104 sampling secondary e+e- according Bethe-Heitler model >> 105 tables are built for gamma >> 106 Lambda tables from 1.022 MeV to 100 GeV in 100 bins. >> 107 >> 108 compt: Total cross sections has a good parametrisation from 10 KeV to (100/Z) GeV >> 109 Sampling according Klein-Nishina model >> 110 tables are built for gamma >> 111 Lambda tables from 100 eV to 100 GeV in 90 bins. >> 112 >> 113 phot: Total cross sections from Sandia parametrisation. >> 114 Sampling according PhotoElectric model >> 115 >> 116 msc: Model variant of multiple scattering for e- >> 117 Lambda tables from 100 eV to 100 TeV in 120 bins. >> 118 Boundary/stepping algorithm is active with facrange= 0.02 Step limitation 1 >> 119 >> 120 eIoni: tables are built for e- >> 121 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 122 Lambda tables from threshold to 100 TeV in 120 bins. >> 123 Delta cross sections and sampling from MollerBhabha model >> 124 Good description from 1 KeV to 100 GeV. >> 125 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 >> 126 >> 127 eBrem: tables are built for e- >> 128 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 129 Lambda tables from threshold to 100 TeV in 120 bins. >> 130 Total cross sections and sampling from StandBrem model (based on the EEDL data library) >> 131 Good description from 1 KeV to 100 GeV, log scale extrapolation above 100 GeV. >> 132 >> 133 eIoni: tables are built for e+ >> 134 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 135 Lambda tables from threshold to 100 TeV in 120 bins. >> 136 Delta cross sections and sampling from MollerBhabha model >> 137 Good description from 1 KeV to 100 GeV. >> 138 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 >> 139 >> 140 eBrem: tables are built for e+ >> 141 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 142 Lambda tables from threshold to 100 TeV in 120 bins. >> 143 Total cross sections and sampling from StandBrem model (based on the EEDL data library) >> 144 Good description from 1 KeV to 100 GeV, log scale extrapolation above 100 GeV. >> 145 >> 146 annihil: Sampling according eplus2gg model >> 147 tables are built for e+ >> 148 Lambda tables from 100 eV to 100 TeV in 120 bins. >> 149 >> 150 msc: Model variant of multiple scattering for proton >> 151 Lambda tables from 100 eV to 100 TeV in 120 bins. >> 152 Boundary/stepping algorithm is active with facrange= 0.02 Step limitation 1 >> 153 >> 154 hIoni: tables are built for proton >> 155 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 156 Lambda tables from threshold to 100 TeV in 120 bins. >> 157 Scaling relation is used from proton dE/dx and range. >> 158 Delta cross sections and sampling from BetheBloch model for scaled energy > 2 MeV >> 159 Parametrisation from Bragg for protons below. >> 160 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 >> 161 >> 162 msc: Model variant of multiple scattering for GenericIon >> 163 Boundary/stepping algorithm is active with facrange= 0.02 Step limitation 1 >> 164 >> 165 hIoni: tables are built for anti_proton >> 166 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 167 Lambda tables from threshold to 100 TeV in 120 bins. >> 168 Scaling relation is used from proton dE/dx and range. >> 169 Delta cross sections and sampling from BetheBloch model for scaled energy > 2 MeV >> 170 Parametrisation from Bragg for protons below. >> 171 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 >> 172 >> 173 msc: Model variant of multiple scattering for mu+ >> 174 Lambda tables from 100 eV to 100 TeV in 120 bins. >> 175 Boundary/stepping algorithm is active with facrange= 0.02 Step limitation 1 >> 176 >> 177 muIoni: tables are built for mu+ >> 178 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 179 Lambda tables from threshold to 100 TeV in 120 bins. >> 180 Bether-Bloch model for E > 0.2 MeV, parametrisation of Bragg peak below, >> 181 radiative corrections for E > 1 GeV >> 182 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 >> 183 >> 184 muBrems: tables are built for mu+ >> 185 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 186 Lambda tables from threshold to 100 TeV in 120 bins. >> 187 Parametrised model >> 188 >> 189 muPairProd: tables are built for mu+ >> 190 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 191 Lambda tables from threshold to 100 TeV in 120 bins. >> 192 Parametrised model >> 193 >> 194 muIoni: tables are built for mu- >> 195 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 196 Lambda tables from threshold to 100 TeV in 120 bins. >> 197 Bether-Bloch model for E > 0.2 MeV, parametrisation of Bragg peak below, >> 198 radiative corrections for E > 1 GeV >> 199 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 >> 200 >> 201 muBrems: tables are built for mu- >> 202 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 203 Lambda tables from threshold to 100 TeV in 120 bins. >> 204 Parametrised model >> 205 >> 206 muPairProd: tables are built for mu- >> 207 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 208 Lambda tables from threshold to 100 TeV in 120 bins. >> 209 Parametrised model >> 210 >> 211 hIoni: tables are built for pi+ >> 212 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 213 Lambda tables from threshold to 100 TeV in 120 bins. >> 214 Scaling relation is used from proton dE/dx and range. >> 215 Delta cross sections and sampling from BetheBloch model for scaled energy > 0.297504 MeV >> 216 Parametrisation from Bragg for protons below. >> 217 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 >> 218 >> 219 msc: Model variant of multiple scattering for pi- >> 220 Lambda tables from 100 eV to 100 TeV in 120 bins. >> 221 Boundary/stepping algorithm is active with facrange= 0.02 Step limitation 1 >> 222 >> 223 hIoni: tables are built for pi- >> 224 dE/dx and range tables from 100 eV to 100 TeV in 120 bins. >> 225 Lambda tables from threshold to 100 TeV in 120 bins. >> 226 Scaling relation is used from proton dE/dx and range. >> 227 Delta cross sections and sampling from BetheBloch model for scaled energy > 0.297504 MeV >> 228 Parametrisation from Bragg for protons below. >> 229 Step function: finalRange(mm)= 1, dRoverRange= 0.2, integral: 1 >> 230 Volume name | Importance| Tr.Entering| Population| Collisions| Coll*WGT| NumWGTedE| FluxWGTedE| Av.Tr.WGT| >> 231 cell_01_rep:0............ | 1 | 115 | 132 | 129 | 129 | 4.9419 | 9.2192509 | 1 | >> 232 cell_02_rep:0............ | 2 | 73 | 152 | 153 | 76.5 | 6.6608595 | 9.0352099 | 1 | >> 233 cell_03_rep:0............ | 4 | 91 | 201 | 186 | 46.5 | 7.7197107 | 8.7377469 | 1 | >> 234 cell_04_rep:0............ | 8 | 92 | 212 | 251 | 31.375 | 7.0717677 | 8.0004664 | 1 | >> 235 cell_05_rep:0............ | 16 | 117 | 229 | 237 | 14.8125 | 7.1619879 | 8.050541 | 1 | >> 236 cell_06_rep:0............ | 32 | 133 | 301 | 355 | 11.09375 | 6.7661673 | 7.8071533 | 1 | >> 237 cell_07_rep:0............ | 64 | 146 | 304 | 380 | 5.9375 | 6.1055566 | 7.3480228 | 1 | >> 238 cell_08_rep:0............ | 128 | 177 | 376 | 439 | 3.4296875 | 5.9739486 | 7.0847309 | 1 | >> 239 cell_09_rep:0............ | 256 | 196 | 418 | 553 | 2.1601562 | 4.7073021 | 6.9428614 | 1 | >> 240 cell_10_rep:0............ | 512 | 199 | 436 | 556 | 1.0859375 | 5.735939 | 7.0925789 | 1 | >> 241 cell_11_rep:0............ | 1024 | 237 | 485 | 619 | 0.60449219 | 5.4202268 | 6.8240104 | 1 | >> 242 cell_12_rep:0............ | 2048 | 274 | 556 | 764 | 0.37304688 | 0.41403405 | 6.4856097 | 1 | >> 243 cell_13_rep:0............ | 4096 | 271 | 592 | 809 | 0.19750977 | 5.0683218 | 6.2675874 | 1 | >> 244 cell_14_rep:0............ | 8192 | 296 | 639 | 952 | 0.11621094 | 4.5960937 | 5.7266154 | 1 | >> 245 cell_15_rep:0............ | 16384 | 322 | 634 | 977 | 0.059631348 | 4.4000889 | 5.5248549 | 1 | >> 246 cell_16_rep:0............ | 32768 | 355 | 724 | 1194 | 0.036437988 | 0.029596617 | 5.1972504 | 1 | >> 247 cell_17_rep:0............ | 65536 | 376 | 788 | 1285 | 0.019607544 | 3.9244532 | 5.0901448 | 1 | >> 248 cell_18_rep:0............ | 131072 | 325 | 790 | 1329 | 0.010139465 | 3.8972239 | 5.0709833 | 1 | >> 249 rest_rep:0............... | 131072 | 366 | 366 | 0 | 0 | 0 | 0 | 0 | >> 250 shieldWorld_rep:0........ | 1 | 11 | 109 | 0 | 0 | 10 | 10 | 1 | >> 251 === G4ProcessPlacer::RemoveProcess: for: neutron >> 252 ProcessName: MassImportanceProcess, will be removed! >> 253 The initial Vectors: >> 254 GPIL Vector: >> 255 Decay >> 256 HadronCapture >> 257 HadronFission >> 258 inelastic >> 259 HadronElastic >> 260 MScoreProcess >> 261 MassImportanceProcess >> 262 Transportation >> 263 DoIt Vector: >> 264 Transportation >> 265 MassImportanceProcess >> 266 MScoreProcess >> 267 HadronElastic >> 268 inelastic >> 269 HadronFission >> 270 HadronCapture >> 271 Decay >> 272 The final Vectors: >> 273 GPIL Vector: >> 274 Decay >> 275 HadronCapture >> 276 HadronFission >> 277 inelastic >> 278 HadronElastic >> 279 MScoreProcess >> 280 Transportation >> 281 DoIt Vector: >> 282 Transportation >> 283 MScoreProcess >> 284 HadronElastic >> 285 inelastic >> 286 HadronFission >> 287 HadronCapture >> 288 Decay >> 289 ================================================ >> 290 === G4ProcessPlacer::RemoveProcess: for: neutron >> 291 ProcessName: MScoreProcess, will be removed! >> 292 The initial Vectors: >> 293 GPIL Vector: >> 294 Decay >> 295 HadronCapture >> 296 HadronFission >> 297 inelastic >> 298 HadronElastic >> 299 MScoreProcess >> 300 Transportation >> 301 DoIt Vector: >> 302 Transportation >> 303 MScoreProcess >> 304 HadronElastic >> 305 inelastic >> 306 HadronFission >> 307 HadronCapture >> 308 Decay >> 309 The final Vectors: >> 310 GPIL Vector: >> 311 Decay >> 312 HadronCapture >> 313 HadronFission >> 314 inelastic >> 315 HadronElastic >> 316 Transportation >> 317 DoIt Vector: >> 318 Transportation >> 319 HadronElastic >> 320 inelastic >> 321 HadronFission >> 322 HadronCapture 81 Decay 323 Decay 82 hadElastic << 83 neutronInelastic << 84 nCapture << 85 nKiller << 86 ============================================== 324 ================================================ 87 B01DetectorConstruction:: Creating Importance << 88 Going to assign importance: 1, to volume: cell << 89 Going to assign importance: 2, to volume: cell << 90 Going to assign importance: 4, to volume: cell << 91 Going to assign importance: 8, to volume: cell << 92 Going to assign importance: 16, to volume: cel << 93 Going to assign importance: 32, to volume: cel << 94 Going to assign importance: 64, to volume: cel << 95 Going to assign importance: 128, to volume: ce << 96 Going to assign importance: 256, to volume: ce << 97 Going to assign importance: 512, to volume: ce << 98 Going to assign importance: 1024, to volume: c << 99 Going to assign importance: 2048, to volume: c << 100 Going to assign importance: 4096, to volume: c << 101 Going to assign importance: 8192, to volume: c << 102 Going to assign importance: 16384, to volume: << 103 Going to assign importance: 32768, to volume: << 104 Going to assign importance: 65536, to volume: << 105 Going to assign importance: 131072, to volume: << 106 ============================================== << 107 ====== Electromagnetic Physics << 108 ============================================== << 109 LPM effect enabled << 110 Enable creation and use of sampling tables << 111 Apply cuts on all EM processes << 112 Use combined TransportationWithMsc << 113 Use general process << 114 Enable linear polarisation for gamma << 115 Enable photoeffect sampling below K-shell << 116 Enable sampling of quantum entanglement << 117 X-section factor for integral approach << 118 Min kinetic energy for tables << 119 Max kinetic energy for tables << 120 Number of bins per decade of a table << 121 Verbose level << 122 Verbose level for worker thread << 123 Bremsstrahlung energy threshold above which << 124 primary e+- is added to the list of secondar << 125 Bremsstrahlung energy threshold above which pr << 126 muon/hadron is added to the list of secondar << 127 Positron annihilation at rest model << 128 Enable 3 gamma annihilation on fly << 129 Lowest triplet kinetic energy << 130 Enable sampling of gamma linear polarisation << 131 5D gamma conversion model type << 132 5D gamma conversion model on isolated ion << 133 Use Ricardo-Gerardo pair production model << 134 Livermore data directory << 135 ============================================== << 136 ====== Ionisation Parameters << 137 ============================================== << 138 Step function for e+- << 139 Step function for muons/hadrons << 140 Step function for light ions << 141 Step function for general ions << 142 Lowest e+e- kinetic energy << 143 Lowest muon/hadron kinetic energy << 144 Use ICRU90 data << 145 Fluctuations of dE/dx are enabled << 146 Type of fluctuation model for leptons and hadr << 147 Use built-in Birks satuaration << 148 Build CSDA range enabled << 149 Use cut as a final range enabled << 150 Enable angular generator interface << 151 Max kinetic energy for CSDA tables << 152 Max kinetic energy for NIEL computation << 153 Linear loss limit << 154 Read data from file for e+e- pair production b << 155 ============================================== << 156 ====== Multiple Scattering Par << 157 ============================================== << 158 Type of msc step limit algorithm for e+- << 159 Type of msc step limit algorithm for muons/had << 160 Msc lateral displacement for e+- enabled << 161 Msc lateral displacement for muons and hadrons << 162 Urban msc model lateral displacement alg96 << 163 Range factor for msc step limit for e+- << 164 Range factor for msc step limit for muons/hadr << 165 Geometry factor for msc step limitation of e+- << 166 Safety factor for msc step limit for e+- << 167 Skin parameter for msc step limitation of e+- << 168 Lambda limit for msc step limit for e+- << 169 Use Mott correction for e- scattering << 170 Factor used for dynamic computation of angular << 171 limit between single and multiple scattering << 172 Fixed angular limit between single << 173 and multiple scattering << 174 Upper energy limit for e+- multiple scattering << 175 Type of electron single scattering model << 176 Type of nuclear form-factor << 177 Screening factor << 178 ============================================== << 179 << 180 phot: for gamma SubType=12 BuildTable=0 << 181 LambdaPrime table from 200 keV to 100 Te << 182 ===== EM models for the G4Region Defaul << 183 LivermorePhElectric : Emin= 0 eV Emax= 1 << 184 << 185 compt: for gamma SubType=13 BuildTable=1 << 186 Lambda table from 100 eV to 1 MeV, 7 bi << 187 LambdaPrime table from 1 MeV to 100 TeV << 188 ===== EM models for the G4Region Defaul << 189 Klein-Nishina : Emin= 0 eV Emax= 1 << 190 << 191 conv: for gamma SubType=14 BuildTable=1 << 192 Lambda table from 1.022 MeV to 100 TeV, << 193 ===== EM models for the G4Region Defaul << 194 BetheHeitlerLPM : Emin= 0 eV Emax= 1 << 195 << 196 Rayl: for gamma SubType=11 BuildTable=1 << 197 Lambda table from 100 eV to 150 keV, 7 << 198 LambdaPrime table from 150 keV to 100 Te << 199 ===== EM models for the G4Region Defaul << 200 LivermoreRayleigh : Emin= 0 eV Emax= 1 << 201 << 202 msc: for e- SubType= 10 << 203 ===== EM models for the G4Region Defaul << 204 UrbanMsc : Emin= 0 eV Emax= 1 << 205 StepLim=UseSafety Rfact=0.04 Gfact=2 << 206 WentzelVIUni : Emin= 100 MeV Emax= 1 << 207 StepLim=UseSafety Rfact=0.04 Gfact=2 << 208 << 209 eIoni: for e- XStype:3 SubType=2 << 210 dE/dx and range tables from 100 eV to 1 << 211 Lambda tables from threshold to 100 TeV, << 212 StepFunction=(0.2, 1 mm), integ: 3, fluc << 213 ===== EM models for the G4Region Defaul << 214 MollerBhabha : Emin= 0 eV Emax= 1 << 215 << 216 eBrem: for e- XStype:4 SubType=3 << 217 dE/dx and range tables from 100 eV to 1 << 218 Lambda tables from threshold to 100 TeV, << 219 LPM flag: 1 for E > 1 GeV, VertexHighEn << 220 ===== EM models for the G4Region Defaul << 221 eBremSB : Emin= 0 eV Emax= << 222 eBremLPM : Emin= 1 GeV Emax= 1 << 223 << 224 CoulombScat: for e- XStype:1 SubType=1 BuildT << 225 Lambda table from 100 MeV to 100 TeV, 7 << 226 ThetaMin(p) < Theta(degree) < 180, pLimi << 227 ===== EM models for the G4Region Defaul << 228 eCoulombScattering : Emin= 100 MeV Emax= 1 << 229 << 230 msc: for e+ SubType= 10 << 231 ===== EM models for the G4Region Defaul << 232 UrbanMsc : Emin= 0 eV Emax= 1 << 233 StepLim=UseSafety Rfact=0.04 Gfact=2 << 234 WentzelVIUni : Emin= 100 MeV Emax= 1 << 235 StepLim=UseSafety Rfact=0.04 Gfact=2 << 236 << 237 eIoni: for e+ XStype:3 SubType=2 << 238 dE/dx and range tables from 100 eV to 1 << 239 Lambda tables from threshold to 100 TeV, << 240 StepFunction=(0.2, 1 mm), integ: 3, fluc << 241 ===== EM models for the G4Region Defaul << 242 MollerBhabha : Emin= 0 eV Emax= 1 << 243 << 244 eBrem: for e+ XStype:4 SubType=3 << 245 dE/dx and range tables from 100 eV to 1 << 246 Lambda tables from threshold to 100 TeV, << 247 LPM flag: 1 for E > 1 GeV, VertexHighEn << 248 ===== EM models for the G4Region Defaul << 249 eBremSB : Emin= 0 eV Emax= << 250 eBremLPM : Emin= 1 GeV Emax= 1 << 251 << 252 annihil: for e+ XStype:2 SubType=5 AtRestMode << 253 ===== EM models for the G4Region Defaul << 254 eplus2gg : Emin= 0 eV Emax= 1 << 255 << 256 CoulombScat: for e+ XStype:1 SubType=1 BuildT << 257 Lambda table from 100 MeV to 100 TeV, 7 << 258 ThetaMin(p) < Theta(degree) < 180, pLimi << 259 ===== EM models for the G4Region Defaul << 260 eCoulombScattering : Emin= 100 MeV Emax= 1 << 261 << 262 msc: for proton SubType= 10 << 263 ===== EM models for the G4Region Defaul << 264 WentzelVIUni : Emin= 0 eV Emax= 1 << 265 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 266 << 267 hIoni: for proton XStype:3 SubType=2 << 268 dE/dx and range tables from 100 eV to 1 << 269 Lambda tables from threshold to 100 TeV, << 270 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 271 ===== EM models for the G4Region Defaul << 272 Bragg : Emin= 0 eV Emax= << 273 BetheBloch : Emin= 2 MeV Emax= 1 << 274 << 275 hBrems: for proton XStype:1 SubType=3 << 276 dE/dx and range tables from 100 eV to 1 << 277 Lambda tables from threshold to 100 TeV, << 278 ===== EM models for the G4Region Defaul << 279 hBrem : Emin= 0 eV Emax= 1 << 280 << 281 hPairProd: for proton XStype:1 SubType=4 << 282 dE/dx and range tables from 100 eV to 1 << 283 Lambda tables from threshold to 100 TeV, << 284 Sampling table 17x1001 from 7.50618 GeV << 285 ===== EM models for the G4Region Defaul << 286 hPairProd : Emin= 0 eV Emax= 1 << 287 << 288 CoulombScat: for proton XStype:1 SubType=1 Bu << 289 Lambda table from threshold to 100 TeV, << 290 ThetaMin(p) < Theta(degree) < 180, pLimi << 291 ===== EM models for the G4Region Defaul << 292 eCoulombScattering : Emin= 0 eV Emax= 1 << 293 << 294 msc: for GenericIon SubType= 10 << 295 ===== EM models for the G4Region Defaul << 296 UrbanMsc : Emin= 0 eV Emax= 1 << 297 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 298 << 299 ionIoni: for GenericIon XStype:3 SubType=2 << 300 dE/dx and range tables from 100 eV to 1 << 301 Lambda tables from threshold to 100 TeV, << 302 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 303 ===== EM models for the G4Region Defaul << 304 Bragg : Emin= 0 eV Emax= << 305 BetheBloch : Emin= 2 MeV Emax= 1 << 306 << 307 msc: for alpha SubType= 10 << 308 ===== EM models for the G4Region Defaul << 309 UrbanMsc : Emin= 0 eV Emax= 1 << 310 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 311 << 312 ionIoni: for alpha XStype:3 SubType=2 << 313 dE/dx and range tables from 100 eV to 1 << 314 Lambda tables from threshold to 100 TeV, << 315 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 316 ===== EM models for the G4Region Defaul << 317 BraggIon : Emin= 0 eV Emax=7.9 << 318 BetheBloch : Emin=7.9452 MeV Emax= << 319 << 320 msc: for anti_proton SubType= 10 << 321 ===== EM models for the G4Region Defaul << 322 WentzelVIUni : Emin= 0 eV Emax= 1 << 323 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 324 << 325 hIoni: for anti_proton XStype:3 SubType=2 << 326 dE/dx and range tables from 100 eV to 1 << 327 Lambda tables from threshold to 100 TeV, << 328 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 329 ===== EM models for the G4Region Defaul << 330 ICRU73QO : Emin= 0 eV Emax= << 331 BetheBloch : Emin= 2 MeV Emax= 1 << 332 << 333 hBrems: for anti_proton XStype:1 SubType=3 << 334 dE/dx and range tables from 100 eV to 1 << 335 Lambda tables from threshold to 100 TeV, << 336 ===== EM models for the G4Region Defaul << 337 hBrem : Emin= 0 eV Emax= 1 << 338 << 339 hPairProd: for anti_proton XStype:1 SubType << 340 dE/dx and range tables from 100 eV to 1 << 341 Lambda tables from threshold to 100 TeV, << 342 Sampling table 17x1001 from 7.50618 GeV << 343 ===== EM models for the G4Region Defaul << 344 hPairProd : Emin= 0 eV Emax= 1 << 345 << 346 CoulombScat: for anti_proton XStype:1 SubType << 347 Lambda table from threshold to 100 TeV, << 348 ThetaMin(p) < Theta(degree) < 180, pLimi << 349 ===== EM models for the G4Region Defaul << 350 eCoulombScattering : Emin= 0 eV Emax= 1 << 351 << 352 msc: for kaon+ SubType= 10 << 353 ===== EM models for the G4Region Defaul << 354 WentzelVIUni : Emin= 0 eV Emax= 1 << 355 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 356 << 357 hIoni: for kaon+ XStype:3 SubType=2 << 358 dE/dx and range tables from 100 eV to 1 << 359 Lambda tables from threshold to 100 TeV, << 360 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 361 ===== EM models for the G4Region Defaul << 362 Bragg : Emin= 0 eV Emax=1.0 << 363 BetheBloch : Emin=1.05231 MeV Emax= << 364 << 365 hBrems: for kaon+ XStype:1 SubType=3 << 366 dE/dx and range tables from 100 eV to 1 << 367 Lambda tables from threshold to 100 TeV, << 368 ===== EM models for the G4Region Defaul << 369 hBrem : Emin= 0 eV Emax= 1 << 370 << 371 hPairProd: for kaon+ XStype:1 SubType=4 << 372 dE/dx and range tables from 100 eV to 1 << 373 Lambda tables from threshold to 100 TeV, << 374 Sampling table 18x1001 from 3.94942 GeV << 375 ===== EM models for the G4Region Defaul << 376 hPairProd : Emin= 0 eV Emax= 1 << 377 << 378 CoulombScat: for kaon+ XStype:1 SubType=1 Bui << 379 Lambda table from threshold to 100 TeV, << 380 ThetaMin(p) < Theta(degree) < 180, pLimi << 381 ===== EM models for the G4Region Defaul << 382 eCoulombScattering : Emin= 0 eV Emax= 1 << 383 << 384 msc: for kaon- SubType= 10 << 385 ===== EM models for the G4Region Defaul << 386 WentzelVIUni : Emin= 0 eV Emax= 1 << 387 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 388 << 389 hIoni: for kaon- XStype:3 SubType=2 << 390 dE/dx and range tables from 100 eV to 1 << 391 Lambda tables from threshold to 100 TeV, << 392 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 393 ===== EM models for the G4Region Defaul << 394 ICRU73QO : Emin= 0 eV Emax=1.0 << 395 BetheBloch : Emin=1.05231 MeV Emax= << 396 << 397 hBrems: for kaon- XStype:1 SubType=3 << 398 dE/dx and range tables from 100 eV to 1 << 399 Lambda tables from threshold to 100 TeV, << 400 ===== EM models for the G4Region Defaul << 401 hBrem : Emin= 0 eV Emax= 1 << 402 << 403 hPairProd: for kaon- XStype:1 SubType=4 << 404 dE/dx and range tables from 100 eV to 1 << 405 Lambda tables from threshold to 100 TeV, << 406 Sampling table 18x1001 from 3.94942 GeV << 407 ===== EM models for the G4Region Defaul << 408 hPairProd : Emin= 0 eV Emax= 1 << 409 << 410 CoulombScat: for kaon- XStype:1 SubType=1 Bui << 411 Used Lambda table of kaon+ << 412 ThetaMin(p) < Theta(degree) < 180, pLimi << 413 ===== EM models for the G4Region Defaul << 414 eCoulombScattering : Emin= 0 eV Emax= 1 << 415 << 416 msc: for mu+ SubType= 10 << 417 ===== EM models for the G4Region Defaul << 418 WentzelVIUni : Emin= 0 eV Emax= 1 << 419 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 420 << 421 muIoni: for mu+ XStype:3 SubType=2 << 422 dE/dx and range tables from 100 eV to 1 << 423 Lambda tables from threshold to 100 TeV, << 424 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 425 ===== EM models for the G4Region Defaul << 426 Bragg : Emin= 0 eV Emax= 2 << 427 MuBetheBloch : Emin= 200 keV Emax= 1 << 428 << 429 muBrems: for mu+ XStype:1 SubType=3 << 430 dE/dx and range tables from 100 eV to 1 << 431 Lambda tables from threshold to 100 TeV, << 432 ===== EM models for the G4Region Defaul << 433 MuBrem : Emin= 0 eV Emax= 1 << 434 << 435 muPairProd: for mu+ XStype:1 SubType=4 << 436 dE/dx and range tables from 100 eV to 1 << 437 Lambda tables from threshold to 100 TeV, << 438 Sampling table 21x1001 from 0.85 GeV to << 439 ===== EM models for the G4Region Defaul << 440 muPairProd : Emin= 0 eV Emax= 1 << 441 << 442 CoulombScat: for mu+ XStype:1 SubType=1 Build << 443 Lambda table from threshold to 100 TeV, << 444 ThetaMin(p) < Theta(degree) < 180, pLimi << 445 ===== EM models for the G4Region Defaul << 446 eCoulombScattering : Emin= 0 eV Emax= 1 << 447 << 448 msc: for mu- SubType= 10 << 449 ===== EM models for the G4Region Defaul << 450 WentzelVIUni : Emin= 0 eV Emax= 1 << 451 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 452 << 453 muIoni: for mu- XStype:3 SubType=2 << 454 dE/dx and range tables from 100 eV to 1 << 455 Lambda tables from threshold to 100 TeV, << 456 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 457 ===== EM models for the G4Region Defaul << 458 ICRU73QO : Emin= 0 eV Emax= 2 << 459 MuBetheBloch : Emin= 200 keV Emax= 1 << 460 << 461 muBrems: for mu- XStype:1 SubType=3 << 462 dE/dx and range tables from 100 eV to 1 << 463 Lambda tables from threshold to 100 TeV, << 464 ===== EM models for the G4Region Defaul << 465 MuBrem : Emin= 0 eV Emax= 1 << 466 << 467 muPairProd: for mu- XStype:1 SubType=4 << 468 dE/dx and range tables from 100 eV to 1 << 469 Lambda tables from threshold to 100 TeV, << 470 Sampling table 21x1001 from 0.85 GeV to << 471 ===== EM models for the G4Region Defaul << 472 muPairProd : Emin= 0 eV Emax= 1 << 473 << 474 CoulombScat: for mu- XStype:1 SubType=1 Build << 475 Used Lambda table of mu+ << 476 ThetaMin(p) < Theta(degree) < 180, pLimi << 477 ===== EM models for the G4Region Defaul << 478 eCoulombScattering : Emin= 0 eV Emax= 1 << 479 << 480 msc: for pi+ SubType= 10 << 481 ===== EM models for the G4Region Defaul << 482 WentzelVIUni : Emin= 0 eV Emax= 1 << 483 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 484 << 485 hIoni: for pi+ XStype:3 SubType=2 << 486 dE/dx and range tables from 100 eV to 1 << 487 Lambda tables from threshold to 100 TeV, << 488 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 489 ===== EM models for the G4Region Defaul << 490 Bragg : Emin= 0 eV Emax=297 << 491 BetheBloch : Emin=297.505 keV Emax= << 492 << 493 hBrems: for pi+ XStype:1 SubType=3 << 494 dE/dx and range tables from 100 eV to 1 << 495 Lambda tables from threshold to 100 TeV, << 496 ===== EM models for the G4Region Defaul << 497 hBrem : Emin= 0 eV Emax= 1 << 498 << 499 hPairProd: for pi+ XStype:1 SubType=4 << 500 dE/dx and range tables from 100 eV to 1 << 501 Lambda tables from threshold to 100 TeV, << 502 Sampling table 20x1001 from 1.11656 GeV << 503 ===== EM models for the G4Region Defaul << 504 hPairProd : Emin= 0 eV Emax= 1 << 505 << 506 CoulombScat: for pi+ XStype:1 SubType=1 Build << 507 Lambda table from threshold to 100 TeV, << 508 ThetaMin(p) < Theta(degree) < 180, pLimi << 509 ===== EM models for the G4Region Defaul << 510 eCoulombScattering : Emin= 0 eV Emax= 1 << 511 << 512 msc: for pi- SubType= 10 << 513 ===== EM models for the G4Region Defaul << 514 WentzelVIUni : Emin= 0 eV Emax= 1 << 515 StepLim=Minimal Rfact=0.2 Gfact=2.5 << 516 << 517 hIoni: for pi- XStype:3 SubType=2 << 518 dE/dx and range tables from 100 eV to 1 << 519 Lambda tables from threshold to 100 TeV, << 520 StepFunction=(0.2, 0.1 mm), integ: 3, fl << 521 ===== EM models for the G4Region Defaul << 522 ICRU73QO : Emin= 0 eV Emax=297 << 523 BetheBloch : Emin=297.505 keV Emax= << 524 << 525 hBrems: for pi- XStype:1 SubType=3 << 526 dE/dx and range tables from 100 eV to 1 << 527 Lambda tables from threshold to 100 TeV, << 528 ===== EM models for the G4Region Defaul << 529 hBrem : Emin= 0 eV Emax= 1 << 530 << 531 hPairProd: for pi- XStype:1 SubType=4 << 532 dE/dx and range tables from 100 eV to 1 << 533 Lambda tables from threshold to 100 TeV, << 534 Sampling table 20x1001 from 1.11656 GeV << 535 ===== EM models for the G4Region Defaul << 536 hPairProd : Emin= 0 eV Emax= 1 << 537 << 538 CoulombScat: for pi- XStype:1 SubType=1 Build << 539 Used Lambda table of pi+ << 540 ThetaMin(p) < Theta(degree) < 180, pLimi << 541 ===== EM models for the G4Region Defaul << 542 eCoulombScattering : Emin= 0 eV Emax= 1 << 543 << 544 ============================================== << 545 HADRONIC PROCESSES SUMMARY ( << 546 ---------------------------------------------- << 547 Hadronic Processes << 548 Process: hadElastic << 549 Model: hElasticCHIPS: 0 eV << 550 Cr_sctns: G4NeutronElasticXS: 0 eV << 551 Process: neutronInelastic << 552 Model: FTFP: 3 Ge << 553 Model: BertiniCascade: 0 eV << 554 Cr_sctns: G4NeutronInelasticXS: 0 eV << 555 Process: nCapture << 556 Model: nRadCapture: 0 eV << 557 Cr_sctns: G4NeutronCaptureXS: 0 eV << 558 Process: nKiller << 559 ---------------------------------------------- << 560 Hadronic Processes << 561 Process: hadElastic << 562 Model: hElasticLHEP: 0 eV << 563 Cr_sctns: Glauber-Gribov: 0 eV << 564 Process: B-Inelastic << 565 Model: FTFP: 0 eV << 566 Cr_sctns: Glauber-Gribov: 0 eV << 567 ---------------------------------------------- << 568 Hadronic Processes << 569 Process: hadElastic << 570 Model: hElasticLHEP: 0 eV << 571 Cr_sctns: Glauber-Gribov: 0 eV << 572 Process: D-Inelastic << 573 Model: FTFP: 0 eV << 574 Cr_sctns: Glauber-Gribov: 0 eV << 575 ---------------------------------------------- << 576 Hadronic Processes << 577 Process: ionInelastic << 578 Model: Binary Light Ion Cascade: 0 eV << 579 Model: FTFP: 3 Ge << 580 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 581 ---------------------------------------------- << 582 Hadronic Processes << 583 Process: hadElastic << 584 Model: hElasticLHEP: 0 eV << 585 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 586 Process: He3Inelastic << 587 Model: Binary Light Ion Cascade: 0 eV << 588 Model: FTFP: 3 Ge << 589 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 590 ---------------------------------------------- << 591 Hadronic Processes << 592 Process: hadElastic << 593 Model: hElasticLHEP: 0 eV << 594 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 595 Process: alphaInelastic << 596 Model: Binary Light Ion Cascade: 0 eV << 597 Model: FTFP: 3 Ge << 598 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 599 ---------------------------------------------- << 600 Hadronic Processes << 601 Process: hadElastic << 602 Model: hElasticLHEP: 0 eV << 603 Model: AntiAElastic: 100 << 604 Cr_sctns: AntiAGlauber: 0 eV << 605 Process: anti_He3Inelastic << 606 Model: FTFP: 0 eV << 607 Cr_sctns: AntiAGlauber: 0 eV << 608 Process: hFritiofCaptureAtRest << 609 ---------------------------------------------- << 610 Hadronic Processes << 611 Process: hadElastic << 612 Model: hElasticLHEP: 0 eV << 613 Model: AntiAElastic: 100 << 614 Cr_sctns: AntiAGlauber: 0 eV << 615 Process: anti_alphaInelastic << 616 Model: FTFP: 0 eV << 617 Cr_sctns: AntiAGlauber: 0 eV << 618 Process: hFritiofCaptureAtRest << 619 ---------------------------------------------- << 620 Hadronic Processes << 621 Process: hadElastic << 622 Model: hElasticLHEP: 0 eV << 623 Model: AntiAElastic: 100 << 624 Cr_sctns: AntiAGlauber: 0 eV << 625 Process: anti_deuteronInelastic << 626 Model: FTFP: 0 eV << 627 Cr_sctns: AntiAGlauber: 0 eV << 628 Process: hFritiofCaptureAtRest << 629 ---------------------------------------------- << 630 Hadronic Processes << 631 Process: hFritiofCaptureAtRest << 632 ---------------------------------------------- << 633 Hadronic Processes << 634 Process: hadElastic << 635 Model: hElasticLHEP: 0 eV << 636 Cr_sctns: Glauber-Gribov: 0 eV << 637 Process: anti_lambdaInelastic << 638 Model: FTFP: 0 eV << 639 Cr_sctns: Glauber-Gribov: 0 eV << 640 Process: hFritiofCaptureAtRest << 641 ---------------------------------------------- << 642 Hadronic Processes << 643 Process: hadElastic << 644 Model: hElasticLHEP: 0 eV << 645 Model: AntiAElastic: 100 << 646 Cr_sctns: AntiAGlauber: 0 eV << 647 Process: anti_neutronInelastic << 648 Model: FTFP: 0 eV << 649 Cr_sctns: AntiAGlauber: 0 eV << 650 Process: hFritiofCaptureAtRest << 651 ---------------------------------------------- << 652 Hadronic Processes << 653 Process: hadElastic << 654 Model: hElasticLHEP: 0 eV << 655 Model: AntiAElastic: 100 << 656 Cr_sctns: AntiAGlauber: 0 eV << 657 Process: anti_protonInelastic << 658 Model: FTFP: 0 eV << 659 Cr_sctns: AntiAGlauber: 0 eV << 660 Process: hFritiofCaptureAtRest << 661 ---------------------------------------------- << 662 Hadronic Processes << 663 Process: hadElastic << 664 Model: hElasticLHEP: 0 eV << 665 Model: AntiAElastic: 100 << 666 Cr_sctns: AntiAGlauber: 0 eV << 667 Process: anti_tritonInelastic << 668 Model: FTFP: 0 eV << 669 Cr_sctns: AntiAGlauber: 0 eV << 670 Process: hFritiofCaptureAtRest << 671 ---------------------------------------------- << 672 Hadronic Processes << 673 Process: hadElastic << 674 Model: hElasticLHEP: 0 eV << 675 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 676 Process: dInelastic << 677 Model: Binary Light Ion Cascade: 0 eV << 678 Model: FTFP: 3 Ge << 679 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 680 ---------------------------------------------- << 681 Hadronic Processes << 682 Process: positronNuclear << 683 Model: G4ElectroVDNuclearModel: 0 eV << 684 Cr_sctns: ElectroNuclearXS: 0 eV << 685 ---------------------------------------------- << 686 Hadronic Processes << 687 Process: electronNuclear << 688 Model: G4ElectroVDNuclearModel: 0 eV << 689 Cr_sctns: ElectroNuclearXS: 0 eV << 690 ---------------------------------------------- << 691 Hadronic Processes << 692 Process: photonNuclear << 693 Model: GammaNPreco: 0 eV << 694 Model: BertiniCascade: 199 << 695 Model: TheoFSGenerator: 3 Ge << 696 Cr_sctns: GammaNuclearXS: 0 eV << 697 ---------------------------------------------- << 698 Hadronic Processes << 699 Process: hadElastic << 700 Model: hElasticLHEP: 0 eV << 701 Cr_sctns: Glauber-Gribov: 0 eV << 702 Process: kaon+Inelastic << 703 Model: FTFP: 3 Ge << 704 Model: BertiniCascade: 0 eV << 705 Cr_sctns: Glauber-Gribov: 0 eV << 706 ---------------------------------------------- << 707 Hadronic Processes << 708 Process: hadElastic << 709 Model: hElasticLHEP: 0 eV << 710 Cr_sctns: Glauber-Gribov: 0 eV << 711 Process: kaon-Inelastic << 712 Model: FTFP: 3 Ge << 713 Model: BertiniCascade: 0 eV << 714 Cr_sctns: Glauber-Gribov: 0 eV << 715 Process: hBertiniCaptureAtRest << 716 ---------------------------------------------- << 717 Hadronic Processes << 718 Process: hadElastic << 719 Model: hElasticLHEP: 0 eV << 720 Cr_sctns: Glauber-Gribov: 0 eV << 721 Process: lambdaInelastic << 722 Model: FTFP: 3 Ge << 723 Model: BertiniCascade: 0 eV << 724 Cr_sctns: Glauber-Gribov: 0 eV << 725 ---------------------------------------------- << 726 Hadronic Processes << 727 Process: muonNuclear << 728 Model: G4MuonVDNuclearModel: 0 eV << 729 Cr_sctns: KokoulinMuonNuclearXS: 0 eV << 730 ---------------------------------------------- << 731 Hadronic Processes << 732 Process: muonNuclear << 733 Model: G4MuonVDNuclearModel: 0 eV << 734 Cr_sctns: KokoulinMuonNuclearXS: 0 eV << 735 Process: muMinusCaptureAtRest << 736 ---------------------------------------------- << 737 Hadronic Processes << 738 Process: hadElastic << 739 Model: hElasticGlauber: 0 eV << 740 Cr_sctns: BarashenkovGlauberGribov: 0 eV << 741 Process: pi+Inelastic << 742 Model: FTFP: 3 Ge << 743 Model: BertiniCascade: 0 eV << 744 Cr_sctns: BarashenkovGlauberGribov: 0 eV << 745 ---------------------------------------------- << 746 Hadronic Processes << 747 Process: hadElastic << 748 Model: hElasticGlauber: 0 eV << 749 Cr_sctns: BarashenkovGlauberGribov: 0 eV << 750 Process: pi-Inelastic << 751 Model: FTFP: 3 Ge << 752 Model: BertiniCascade: 0 eV << 753 Cr_sctns: BarashenkovGlauberGribov: 0 eV << 754 Process: hBertiniCaptureAtRest << 755 ---------------------------------------------- << 756 Hadronic Processes << 757 Process: hadElastic << 758 Model: hElasticCHIPS: 0 eV << 759 Cr_sctns: BarashenkovGlauberGribov: 0 eV << 760 Process: protonInelastic << 761 Model: FTFP: 3 Ge << 762 Model: BertiniCascade: 0 eV << 763 Cr_sctns: BarashenkovGlauberGribov: 0 eV << 764 ---------------------------------------------- << 765 Hadronic Processes << 766 Process: hadElastic << 767 Model: hElasticLHEP: 0 eV << 768 Cr_sctns: Glauber-Gribov: 0 eV << 769 Process: sigma-Inelastic << 770 Model: FTFP: 3 Ge << 771 Model: BertiniCascade: 0 eV << 772 Cr_sctns: Glauber-Gribov: 0 eV << 773 Process: hBertiniCaptureAtRest << 774 ---------------------------------------------- << 775 Hadronic Processes << 776 Process: hadElastic << 777 Model: hElasticLHEP: 0 eV << 778 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 779 Process: tInelastic << 780 Model: Binary Light Ion Cascade: 0 eV << 781 Model: FTFP: 3 Ge << 782 Cr_sctns: Glauber-Gribov Nucl-nucl: 0 eV << 783 ============================================== << 784 ====== Geant4 Native Pre-compound Model << 785 ============================================== << 786 Type of pre-compound inverse x-section << 787 Pre-compound model active << 788 Pre-compound excitation low energy << 789 Pre-compound excitation high energy << 790 Angular generator for pre-compound model << 791 Use NeverGoBack option for pre-compound model << 792 Use SoftCutOff option for pre-compound model << 793 Use CEM transitions for pre-compound model << 794 Use GNASH transitions for pre-compound model << 795 Use HETC submodel for pre-compound model << 796 ============================================== << 797 ====== Nuclear De-excitation Module Para << 798 ============================================== << 799 Type of de-excitation inverse x-section << 800 Type of de-excitation factory << 801 Number of de-excitation channels << 802 Min excitation energy << 803 Min energy per nucleon for multifragmentation << 804 Limit excitation energy for Fermi BreakUp << 805 Level density (1/MeV) << 806 Use simple level density model << 807 Use discrete excitation energy of the residual << 808 Time limit for long lived isomeres << 809 Isomer production flag << 810 Internal e- conversion flag << 811 Store e- internal conversion data << 812 Correlated gamma emission flag << 813 Max 2J for sampling of angular correlations << 814 ============================================== << 815 ++ ConcreteSD/Collisions id 0 << 816 ++ ConcreteSD/CollWeight id 1 << 817 ++ ConcreteSD/Population id 2 << 818 ++ ConcreteSD/TrackEnter id 3 << 819 ++ ConcreteSD/SL id 4 << 820 ++ ConcreteSD/SLW id 5 << 821 ++ ConcreteSD/SLWE id 6 << 822 ++ ConcreteSD/SLW_V id 7 << 823 ++ ConcreteSD/SLWE_V id 8 << 824 ### Run 0 start. << 825 ###### EndOfRunAction << 826 << 827 --------------------End of Global Run--------- << 828 Number of event processed : 100 << 829 ============================================== << 830 ============================================== << 831 Volume | Tr.Entering | Population << 832 cell_00 | 32 | 127 << 833 cell_01 | 139 | 179 << 834 cell_02 | 174 | 270 << 835 cell_03 | 229 | 334 << 836 cell_04 | 254 | 381 << 837 cell_05 | 291 | 420 << 838 cell_06 | 327 | 472 << 839 cell_07 | 296 | 437 << 840 cell_08 | 262 | 372 << 841 cell_09 | 260 | 356 << 842 cell_10 | 229 | 331 << 843 cell_11 | 186 | 270 << 844 cell_12 | 154 | 220 << 845 cell_13 | 123 | 185 << 846 cell_14 | 109 | 157 << 847 cell_15 | 79 | 112 << 848 cell_16 | 68 | 99 << 849 cell_17 | 53 | 82 << 850 cell_18 | 32 | 57 << 851 cell_19 | 25 | 25 << 852 ============================================= <<