Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // This example is provided by the Geant4-DNA 26 // This example is provided by the Geant4-DNA collaboration 27 // Any report or published results obtained us 27 // Any report or published results obtained using the Geant4-DNA software 28 // shall cite the following Geant4-DNA collabo 28 // shall cite the following Geant4-DNA collaboration publication: 29 // Med. Phys. 37 (2010) 4692-4708 29 // Med. Phys. 37 (2010) 4692-4708 30 // The Geant4-DNA web site is available at htt 30 // The Geant4-DNA web site is available at http://geant4-dna.org 31 // 31 // 32 // If you use this example, please cite the fo 32 // If you use this example, please cite the following publication: 33 // Rad. Prot. Dos. 133 (2009) 2-11 33 // Rad. Prot. Dos. 133 (2009) 2-11 34 // << 35 // Based on purging magnet advanced example. << 36 // << 37 34 38 #include "EMField.hh" 35 #include "EMField.hh" 39 #include "G4Exp.hh" << 40 #include "G4SystemOfUnits.hh" 36 #include "G4SystemOfUnits.hh" 41 37 42 EMField::EMField() 38 EMField::EMField() 43 {} << 39 { >> 40 } 44 41 45 void EMField::GetFieldValue(const double point 42 void EMField::GetFieldValue(const double point[4], double *Bfield ) const 46 { 43 { 47 // Magnetic field 44 // Magnetic field 48 Bfield[0] = 0; 45 Bfield[0] = 0; 49 Bfield[1] = 0; 46 Bfield[1] = 0; 50 Bfield[2] = 0; 47 Bfield[2] = 0; 51 48 52 // Electric field 49 // Electric field 53 Bfield[3] = 0; 50 Bfield[3] = 0; 54 Bfield[4] = 0; 51 Bfield[4] = 0; 55 Bfield[5] = 0; 52 Bfield[5] = 0; 56 53 57 G4double Bx = 0; 54 G4double Bx = 0; 58 G4double By = 0; 55 G4double By = 0; 59 G4double Bz = 0; 56 G4double Bz = 0; 60 57 61 G4double x = point[0]; 58 G4double x = point[0]; 62 G4double y = point[1]; 59 G4double y = point[1]; 63 G4double z = point[2]; 60 G4double z = point[2]; 64 61 65 // *********************** 62 // *********************** 66 // AIFIRA SWITCHING MAGNET 63 // AIFIRA SWITCHING MAGNET 67 // *********************** 64 // *********************** 68 65 69 // MAGNETIC FIELD VALUE FOR 3 MeV ALPHAS 66 // MAGNETIC FIELD VALUE FOR 3 MeV ALPHAS 70 G4double switchingField = 0.0589768635 * tes << 67 // G4double switchingField = 0.0589768635 * tesla ; >> 68 G4double switchingField = 0.0590201 * tesla ; 71 69 72 // BEAM START 70 // BEAM START 73 G4double beamStart = -10*m; 71 G4double beamStart = -10*m; 74 72 75 // RADIUS 73 // RADIUS 76 G4double Rp = 0.698*m; 74 G4double Rp = 0.698*m; 77 75 78 // ENTRANCE POSITION AFTER ANALYSIS MAGNET 76 // ENTRANCE POSITION AFTER ANALYSIS MAGNET 79 G4double zS = 975*mm; 77 G4double zS = 975*mm; 80 78 81 // POLE GAP 79 // POLE GAP 82 G4double D = 31.8*mm; 80 G4double D = 31.8*mm; 83 81 84 // FRINGING FIELD 82 // FRINGING FIELD 85 83 86 G4double fieldBoundary, wc0, wc1, wc2, wc3, 84 G4double fieldBoundary, wc0, wc1, wc2, wc3, limitMinEntrance, limitMaxEntrance, limitMinExit, limitMaxExit; 87 85 88 limitMinEntrance = beamStart+zS-4*D; 86 limitMinEntrance = beamStart+zS-4*D; 89 limitMaxEntrance = beamStart+zS+4*D; 87 limitMaxEntrance = beamStart+zS+4*D; 90 limitMinExit =Rp-4*D; 88 limitMinExit =Rp-4*D; 91 limitMaxExit =Rp+4*D; 89 limitMaxExit =Rp+4*D; 92 90 93 wc0 = 0.3835; 91 wc0 = 0.3835; 94 wc1 = 2.388; 92 wc1 = 2.388; 95 wc2 = -0.8171; 93 wc2 = -0.8171; 96 wc3 = 0.200; 94 wc3 = 0.200; 97 95 98 fieldBoundary=0.62; 96 fieldBoundary=0.62; 99 97 100 G4double ws, largeS, h, dhdlargeS, dhds, dla 98 G4double ws, largeS, h, dhdlargeS, dhds, dlargeSds, dsdz, dsdx, zs0, Rs0, xcenter, zcenter; 101 99 102 // - ENTRANCE OF SWITCHING MAGNET 100 // - ENTRANCE OF SWITCHING MAGNET 103 101 104 if ( (z >= limitMinEntrance) && (z < limitMaxE 102 if ( (z >= limitMinEntrance) && (z < limitMaxEntrance) ) 105 { 103 { 106 zs0 = fieldBoundary*D; 104 zs0 = fieldBoundary*D; 107 ws = (-z+beamStart+zS-zs0)/D; 105 ws = (-z+beamStart+zS-zs0)/D; 108 dsdz = -1/D; 106 dsdz = -1/D; 109 dsdx = 0; 107 dsdx = 0; 110 108 111 largeS = wc0 + wc1*ws + wc2*ws*ws + wc3*ws*w 109 largeS = wc0 + wc1*ws + wc2*ws*ws + wc3*ws*ws*ws; 112 h = 1./(1.+G4Exp(largeS)); << 110 h = 1./(1.+std::exp(largeS)); 113 dhdlargeS = -G4Exp(largeS)*h*h; << 111 dhdlargeS = -std::exp(largeS)*h*h; 114 dlargeSds = wc1+ 2*wc2*ws + 3*wc3*ws*ws; 112 dlargeSds = wc1+ 2*wc2*ws + 3*wc3*ws*ws; 115 dhds = dhdlargeS * dlargeSds; 113 dhds = dhdlargeS * dlargeSds; 116 114 117 By = switchingField * h ; 115 By = switchingField * h ; 118 Bx = y*switchingField*dhds*dsdx; 116 Bx = y*switchingField*dhds*dsdx; 119 Bz = y*switchingField*dhds*dsdz; 117 Bz = y*switchingField*dhds*dsdz; 120 118 121 } 119 } 122 120 123 // - HEART OF SWITCHING MAGNET 121 // - HEART OF SWITCHING MAGNET 124 122 125 if ( 123 if ( 126 (z >= limitMaxEntrance) << 124 (z >= limitMaxEntrance) 127 && (( x*x + (z -(beamStart+zS))*(z -(be << 125 && (( x*x + (z -(beamStart+zS))*(z -(beamStart+zS)) < limitMinExit*limitMinExit)) 128 ) 126 ) 129 { 127 { 130 Bx=0; 128 Bx=0; 131 By = switchingField; 129 By = switchingField; 132 Bz=0; 130 Bz=0; 133 } 131 } 134 132 135 // - EXIT OF SWITCHING MAGNET 133 // - EXIT OF SWITCHING MAGNET 136 134 137 if ( 135 if ( 138 (z >= limitMaxEntrance) << 136 (z >= limitMaxEntrance) 139 && (( x*x + (z -(beamStart+zS))*(z -(beam << 137 && (( x*x + (z -(beamStart+zS))*(z -(beamStart+zS))) >= limitMinExit*limitMinExit) 140 && (( x*x + (z -(beamStart+zS))*(z -(beam << 138 && (( x*x + (z -(beamStart+zS))*(z -(beamStart+zS))) < limitMaxExit*limitMaxExit) 141 139 142 ) << 140 ) 143 { 141 { 144 142 145 xcenter = 0; 143 xcenter = 0; 146 zcenter = beamStart+zS; 144 zcenter = beamStart+zS; 147 145 148 Rs0 = Rp + D*fieldBoundary; 146 Rs0 = Rp + D*fieldBoundary; 149 ws = (std::sqrt((z-zcenter)*(z-zcenter)+(x-x 147 ws = (std::sqrt((z-zcenter)*(z-zcenter)+(x-xcenter)*(x-xcenter)) - Rs0)/D; 150 148 151 dsdz = (1/D)*(z-zcenter)/std::sqrt((z-zcente 149 dsdz = (1/D)*(z-zcenter)/std::sqrt((z-zcenter)*(z-zcenter)+(x-xcenter)*(x-xcenter)); 152 dsdx = (1/D)*(x-xcenter)/std::sqrt((z-zcente 150 dsdx = (1/D)*(x-xcenter)/std::sqrt((z-zcenter)*(z-zcenter)+(x-xcenter)*(x-xcenter)); 153 151 154 largeS = wc0 + wc1*ws + wc2*ws*ws + wc3*ws*w 152 largeS = wc0 + wc1*ws + wc2*ws*ws + wc3*ws*ws*ws; 155 h = 1./(1.+G4Exp(largeS)); << 153 h = 1./(1.+std::exp(largeS)); 156 dhdlargeS = -G4Exp(largeS)*h*h; << 154 dhdlargeS = -std::exp(largeS)*h*h; 157 dlargeSds = wc1+ 2*wc2*ws + 3*wc3*ws*ws; 155 dlargeSds = wc1+ 2*wc2*ws + 3*wc3*ws*ws; 158 dhds = dhdlargeS * dlargeSds; 156 dhds = dhdlargeS * dlargeSds; 159 157 160 By = switchingField * h ; 158 By = switchingField * h ; 161 Bx = y*switchingField*dhds*dsdx; 159 Bx = y*switchingField*dhds*dsdx; 162 Bz = y*switchingField*dhds*dsdz; 160 Bz = y*switchingField*dhds*dsdz; 163 161 164 } 162 } 165 163 166 // ************************** 164 // ************************** 167 // MICROBEAM LINE QUADRUPOLES 165 // MICROBEAM LINE QUADRUPOLES 168 // ************************** 166 // ************************** 169 167 170 // MICROBEAM LINE ANGLE 168 // MICROBEAM LINE ANGLE 171 G4double lineAngle = -10*deg; 169 G4double lineAngle = -10*deg; 172 170 173 // X POSITION OF FIRST QUADRUPOLE 171 // X POSITION OF FIRST QUADRUPOLE 174 G4double lineX = -1295.59*mm; 172 G4double lineX = -1295.59*mm; 175 173 176 // Z POSITION OF FIRST QUADRUPOLE 174 // Z POSITION OF FIRST QUADRUPOLE 177 G4double lineZ = -1327*mm; 175 G4double lineZ = -1327*mm; 178 176 179 // Adjust magnetic zone absolute position 177 // Adjust magnetic zone absolute position 180 lineX = lineX + 5.24*micrometer*std::cos(-li 178 lineX = lineX + 5.24*micrometer*std::cos(-lineAngle); // 5.24 = 1.3 + 3.94 micrometer (cf. DetectorConstruction) 181 lineZ = lineZ + 5.24*micrometer*std::sin(-li 179 lineZ = lineZ + 5.24*micrometer*std::sin(-lineAngle); 182 180 183 // QUADRUPOLE HALF LENGTH 181 // QUADRUPOLE HALF LENGTH 184 G4double quadHalfLength = 75*mm; 182 G4double quadHalfLength = 75*mm; 185 183 186 // QUADRUPOLE SPACING 184 // QUADRUPOLE SPACING 187 G4double quadSpacing = 40*mm; 185 G4double quadSpacing = 40*mm; 188 186 189 // QUADRUPOLE CENTER COORDINATES 187 // QUADRUPOLE CENTER COORDINATES 190 G4double xoprime, zoprime; 188 G4double xoprime, zoprime; 191 189 192 if (z>=-1400*mm && z <-200*mm) 190 if (z>=-1400*mm && z <-200*mm) 193 { 191 { 194 Bx=0; By=0; Bz=0; 192 Bx=0; By=0; Bz=0; 195 193 196 // FRINGING FILED CONSTANTS 194 // FRINGING FILED CONSTANTS 197 G4double c0[4], c1[4], c2[4], z1[4], z2[4], 195 G4double c0[4], c1[4], c2[4], z1[4], z2[4], a0[4], gradient[4]; 198 196 199 // QUADRUPOLE 1 197 // QUADRUPOLE 1 200 c0[0] = -5.; 198 c0[0] = -5.; 201 c1[0] = 2.5; 199 c1[0] = 2.5; 202 c2[0] = -0.1; 200 c2[0] = -0.1; 203 z1[0] = 60*mm; 201 z1[0] = 60*mm; 204 z2[0] = 130*mm; 202 z2[0] = 130*mm; 205 a0[0] = 10*mm; 203 a0[0] = 10*mm; 206 gradient[0] = 3.406526 *tesla/m; 204 gradient[0] = 3.406526 *tesla/m; 207 205 208 // QUADRUPOLE 2 206 // QUADRUPOLE 2 209 c0[1] = -5.; 207 c0[1] = -5.; 210 c1[1] = 2.5; 208 c1[1] = 2.5; 211 c2[1] = -0.1; 209 c2[1] = -0.1; 212 z1[1] = 60*mm; 210 z1[1] = 60*mm; 213 z2[1] = 130*mm; 211 z2[1] = 130*mm; 214 a0[1] = 10*mm; 212 a0[1] = 10*mm; 215 gradient[1] = -8.505263 *tesla/m; 213 gradient[1] = -8.505263 *tesla/m; 216 214 217 // QUADRUPOLE 3 215 // QUADRUPOLE 3 218 c0[2] = -5.; 216 c0[2] = -5.; 219 c1[2] = 2.5; 217 c1[2] = 2.5; 220 c2[2] = -0.1; 218 c2[2] = -0.1; 221 z1[2] = 60*mm; 219 z1[2] = 60*mm; 222 z2[2] = 130*mm; 220 z2[2] = 130*mm; 223 a0[2] = 10*mm; 221 a0[2] = 10*mm; 224 gradient[2] = 8.505263 *tesla/m; 222 gradient[2] = 8.505263 *tesla/m; 225 223 226 // QUADRUPOLE 4 224 // QUADRUPOLE 4 227 c0[3] = -5.; 225 c0[3] = -5.; 228 c1[3] = 2.5; 226 c1[3] = 2.5; 229 c2[3] = -0.1; 227 c2[3] = -0.1; 230 z1[3] = 60*mm; 228 z1[3] = 60*mm; 231 z2[3] = 130*mm; 229 z2[3] = 130*mm; 232 a0[3] = 10*mm; 230 a0[3] = 10*mm; 233 gradient[3] = -3.406526*tesla/m; 231 gradient[3] = -3.406526*tesla/m; 234 232 235 // FIELD CREATED BY A QUADRUPOLE IN ITS LOCA 233 // FIELD CREATED BY A QUADRUPOLE IN ITS LOCAL FRAME 236 G4double Bx_local,By_local,Bz_local; 234 G4double Bx_local,By_local,Bz_local; 237 Bx_local = 0; By_local = 0; Bz_local = 0; 235 Bx_local = 0; By_local = 0; Bz_local = 0; 238 236 239 // FIELD CREATED BY A QUADRUPOOLE IN WORLD F 237 // FIELD CREATED BY A QUADRUPOOLE IN WORLD FRAME 240 G4double Bx_quad,By_quad,Bz_quad; 238 G4double Bx_quad,By_quad,Bz_quad; 241 Bx_quad = 0; By_quad=0; Bz_quad=0; 239 Bx_quad = 0; By_quad=0; Bz_quad=0; 242 240 243 // QUADRUPOLE FRAME 241 // QUADRUPOLE FRAME 244 G4double x_local,y_local,z_local; 242 G4double x_local,y_local,z_local; 245 x_local= 0; y_local=0; z_local=0; 243 x_local= 0; y_local=0; z_local=0; 246 244 247 G4double vars = 0; 245 G4double vars = 0; 248 G4double G0, G1, G2, G3; 246 G4double G0, G1, G2, G3; 249 G4double K1, K2, K3; 247 G4double K1, K2, K3; 250 G4double P0, P1, P2, cte; 248 G4double P0, P1, P2, cte; 251 249 252 K1=0; 250 K1=0; 253 K2=0; 251 K2=0; 254 K3=0; 252 K3=0; 255 P0=0; 253 P0=0; 256 P1=0; 254 P1=0; 257 P2=0; 255 P2=0; 258 G0=0; 256 G0=0; 259 G1=0; 257 G1=0; 260 G2=0; 258 G2=0; 261 G3=0; 259 G3=0; 262 cte=0; 260 cte=0; 263 261 264 G4bool largeScattering=false; 262 G4bool largeScattering=false; 265 263 266 for (G4int i=0;i<4; i++) 264 for (G4int i=0;i<4; i++) 267 { 265 { 268 266 269 if (i==0) 267 if (i==0) 270 { xoprime = lineX + quadHalfLength*std::si 268 { xoprime = lineX + quadHalfLength*std::sin(lineAngle); 271 zoprime = lineZ + quadHalfLength*std::co 269 zoprime = lineZ + quadHalfLength*std::cos(lineAngle); 272 270 273 x_local = (x - xoprime) * std::cos (line 271 x_local = (x - xoprime) * std::cos (lineAngle) - (z - zoprime) * std::sin (lineAngle); 274 y_local = y; 272 y_local = y; 275 z_local = (z - zoprime) * std::cos (line 273 z_local = (z - zoprime) * std::cos (lineAngle) + (x - xoprime) * std::sin (lineAngle); 276 if (std::sqrt(x_local*x_local+y_local*y_ 274 if (std::sqrt(x_local*x_local+y_local*y_local)>a0[i]) largeScattering=true; 277 275 278 } 276 } 279 277 280 if (i==1) 278 if (i==1) 281 { xoprime = lineX + (3*quadHalfLength+quad 279 { xoprime = lineX + (3*quadHalfLength+quadSpacing)*std::sin(lineAngle); 282 zoprime = lineZ + (3*quadHalfLength+quad 280 zoprime = lineZ + (3*quadHalfLength+quadSpacing)*std::cos(lineAngle); 283 281 284 x_local = (x - xoprime) * std::cos (line 282 x_local = (x - xoprime) * std::cos (lineAngle) - (z - zoprime) * std::sin (lineAngle); 285 y_local = y; 283 y_local = y; 286 z_local = (z - zoprime) * std::cos (line 284 z_local = (z - zoprime) * std::cos (lineAngle) + (x - xoprime) * std::sin (lineAngle); 287 if (std::sqrt(x_local*x_local+y_local*y_ 285 if (std::sqrt(x_local*x_local+y_local*y_local)>a0[i]) largeScattering=true; 288 } 286 } 289 287 290 if (i==2) 288 if (i==2) 291 { xoprime = lineX + (5*quadHalfLength+2*qu 289 { xoprime = lineX + (5*quadHalfLength+2*quadSpacing)*std::sin(lineAngle); 292 zoprime = lineZ + (5*quadHalfLength+2*qu 290 zoprime = lineZ + (5*quadHalfLength+2*quadSpacing)*std::cos(lineAngle); 293 291 294 x_local = (x - xoprime) * std::cos (line 292 x_local = (x - xoprime) * std::cos (lineAngle) - (z - zoprime) * std::sin (lineAngle); 295 y_local = y; 293 y_local = y; 296 z_local = (z - zoprime) * std::cos (line 294 z_local = (z - zoprime) * std::cos (lineAngle) + (x - xoprime) * std::sin (lineAngle); 297 if (std::sqrt(x_local*x_local+y_local*y_ 295 if (std::sqrt(x_local*x_local+y_local*y_local)>a0[i]) largeScattering=true; 298 } 296 } 299 297 300 if (i==3) 298 if (i==3) 301 { xoprime = lineX + (7*quadHalfLength+3*qu 299 { xoprime = lineX + (7*quadHalfLength+3*quadSpacing)*std::sin(lineAngle); 302 zoprime = lineZ + (7*quadHalfLength+3*qu 300 zoprime = lineZ + (7*quadHalfLength+3*quadSpacing)*std::cos(lineAngle); 303 301 304 x_local = (x - xoprime) * std::cos (line 302 x_local = (x - xoprime) * std::cos (lineAngle) - (z - zoprime) * std::sin (lineAngle); 305 y_local = y; 303 y_local = y; 306 z_local = (z - zoprime) * std::cos (line 304 z_local = (z - zoprime) * std::cos (lineAngle) + (x - xoprime) * std::sin (lineAngle); 307 if (std::sqrt(x_local*x_local+y_local*y_ 305 if (std::sqrt(x_local*x_local+y_local*y_local)>a0[i]) largeScattering=true; 308 } 306 } 309 307 310 308 311 if ( z_local < -z2[i] ) << 309 if ( z_local < -z2[i] ) 312 { 310 { 313 G0=0; 311 G0=0; 314 G1=0; 312 G1=0; 315 G2=0; 313 G2=0; 316 G3=0; 314 G3=0; 317 } 315 } 318 316 319 if ( z_local > z2[i] ) 317 if ( z_local > z2[i] ) 320 { 318 { 321 G0=0; 319 G0=0; 322 G1=0; 320 G1=0; 323 G2=0; 321 G2=0; 324 G3=0; 322 G3=0; 325 } 323 } 326 324 327 if ( (z_local>=-z1[i]) & (z_local<=z1[i]) ) 325 if ( (z_local>=-z1[i]) & (z_local<=z1[i]) ) 328 { 326 { 329 G0=gradient[i]; 327 G0=gradient[i]; 330 G1=0; 328 G1=0; 331 G2=0; 329 G2=0; 332 G3=0; 330 G3=0; 333 } 331 } 334 332 335 if ( ((z_local>=-z2[i]) & (z_local<-z1[i])) 333 if ( ((z_local>=-z2[i]) & (z_local<-z1[i])) || ((z_local>z1[i]) & (z_local<=z2[i])) ) 336 { 334 { 337 335 338 vars = ( z_local - z1[i]) / a0[i] ; << 336 vars = ( z_local - z1[i]) / a0[i] ; 339 if (z_local<-z1[i]) vars = ( - z_local - << 337 if (z_local<-z1[i]) vars = ( - z_local - z1[i]) / a0[i] ; 340 338 341 339 342 P0 = c0[i]+c1[i]*vars+c2[i]*vars*vars; << 340 P0 = c0[i]+c1[i]*vars+c2[i]*vars*vars; 343 341 344 P1 = c1[i]/a0[i]+2*c2[i]*(z_local-z1[i])/a << 342 P1 = c1[i]/a0[i]+2*c2[i]*(z_local-z1[i])/a0[i]/a0[i]; 345 if (z_local<-z1[i]) P1 = -c1[i]/a0[i]+2*c << 343 if (z_local<-z1[i]) P1 = -c1[i]/a0[i]+2*c2[i]*(z_local+z1[i])/a0[i]/a0[i]; 346 344 347 P2 = 2*c2[i]/a0[i]/a0[i]; << 345 P2 = 2*c2[i]/a0[i]/a0[i]; 348 346 349 cte = 1 + G4Exp(c0[i]); << 347 cte = 1 + std::exp(c0[i]); 350 348 351 K1 = -cte*P1*G4Exp(P0)/( (1+G4Exp(P0))*(1+ << 349 K1 = -cte*P1*std::exp(P0)/( (1+std::exp(P0))*(1+std::exp(P0)) ); 352 350 353 K2 = -cte*G4Exp(P0)*( << 351 K2 = -cte*std::exp(P0)*( 354 P2/( (1+G4Exp(P0))*(1+G4Exp(P0)) ) << 352 P2/( (1+std::exp(P0))*(1+std::exp(P0)) ) 355 +2*P1*K1/(1+G4Exp(P0))/cte << 353 +2*P1*K1/(1+std::exp(P0))/cte 356 +P1*P1/(1+G4Exp(P0))/(1+G4Exp(P0)) << 354 +P1*P1/(1+std::exp(P0))/(1+std::exp(P0)) 357 ); << 355 ); 358 356 359 K3 = -cte*G4Exp(P0)*( << 357 K3 = -cte*std::exp(P0)*( 360 (3*P2*P1+P1*P1*P1)/(1+G4Exp(P0))/(1+G4Exp( << 358 (3*P2*P1+P1*P1*P1)/(1+std::exp(P0))/(1+std::exp(P0)) 361 +4*K1*(P1*P1+P2)/(1+G4Exp(P0))/cte << 359 +4*K1*(P1*P1+P2)/(1+std::exp(P0))/cte 362 +2*P1*(K1*K1/cte/cte+K2/(1+G4Exp(P0))/cte) << 360 +2*P1*(K1*K1/cte/cte+K2/(1+std::exp(P0))/cte) 363 ); << 361 ); 364 362 365 G0 = gradient[i]*cte/(1+G4Exp(P0)); << 363 G0 = gradient[i]*cte/(1+std::exp(P0)); 366 G1 = gradient[i]*K1; << 364 G1 = gradient[i]*K1; 367 G2 = gradient[i]*K2; << 365 G2 = gradient[i]*K2; 368 G3 = gradient[i]*K3; << 366 G3 = gradient[i]*K3; 369 367 370 } 368 } 371 369 372 // PROTECTION AGAINST LARGE SCATTERING 370 // PROTECTION AGAINST LARGE SCATTERING 373 371 374 if ( largeScattering ) 372 if ( largeScattering ) 375 { 373 { 376 G0=0; 374 G0=0; 377 G1=0; 375 G1=0; 378 G2=0; 376 G2=0; 379 G3=0; 377 G3=0; 380 } 378 } 381 379 382 // MAGNETIC FIELD COMPUTATION FOR EACH QUAD 380 // MAGNETIC FIELD COMPUTATION FOR EACH QUADRUPOLE 383 381 384 Bx_local = y_local*(G0-(1./12)*(3*x_local*x 382 Bx_local = y_local*(G0-(1./12)*(3*x_local*x_local+y_local*y_local)*G2); 385 By_local = x_local*(G0-(1./12)*(3*y_local*y 383 By_local = x_local*(G0-(1./12)*(3*y_local*y_local+x_local*x_local)*G2); 386 Bz_local = x_local*y_local*(G1-(1./12)*(x_l 384 Bz_local = x_local*y_local*(G1-(1./12)*(x_local*x_local+y_local*y_local)*G3); 387 385 388 Bx_quad = Bz_local*std::sin(lineAngle)+Bx_l 386 Bx_quad = Bz_local*std::sin(lineAngle)+Bx_local*std::cos(lineAngle); 389 By_quad = By_local; 387 By_quad = By_local; 390 Bz_quad = Bz_local*std::cos(lineAngle)-Bx_l 388 Bz_quad = Bz_local*std::cos(lineAngle)-Bx_local*std::sin(lineAngle); 391 389 392 // TOTAL MAGNETIC FIELD 390 // TOTAL MAGNETIC FIELD 393 391 394 Bx = Bx + Bx_quad ; 392 Bx = Bx + Bx_quad ; 395 By = By + By_quad ; 393 By = By + By_quad ; 396 Bz = Bz + Bz_quad ; 394 Bz = Bz + Bz_quad ; 397 395 398 } // LOOP ON QUADRUPOLES 396 } // LOOP ON QUADRUPOLES 399 397 400 398 401 } // END OF QUADRUPLET 399 } // END OF QUADRUPLET 402 400 403 Bfield[0] = Bx; 401 Bfield[0] = Bx; 404 Bfield[1] = By; 402 Bfield[1] = By; 405 Bfield[2] = Bz; 403 Bfield[2] = Bz; 406 404 407 // ***************************************** 405 // ***************************************** 408 // ELECTRIC FIELD CREATED BY SCANNING PLATES 406 // ELECTRIC FIELD CREATED BY SCANNING PLATES 409 // ***************************************** 407 // ***************************************** 410 408 411 Bfield[3] = 0; 409 Bfield[3] = 0; 412 Bfield[4] = 0; 410 Bfield[4] = 0; 413 Bfield[5] = 0; 411 Bfield[5] = 0; 414 412 415 // POSITION OF EXIT OF LAST QUAD WHERE THE S 413 // POSITION OF EXIT OF LAST QUAD WHERE THE SCANNING PLATES START 416 414 417 G4double electricPlateWidth1 = 5 * mm; 415 G4double electricPlateWidth1 = 5 * mm; 418 G4double electricPlateWidth2 = 5 * mm; 416 G4double electricPlateWidth2 = 5 * mm; 419 G4double electricPlateLength1 = 36 * mm; 417 G4double electricPlateLength1 = 36 * mm; 420 G4double electricPlateLength2 = 34 * mm; 418 G4double electricPlateLength2 = 34 * mm; 421 G4double electricPlateGap = 5 * mm; 419 G4double electricPlateGap = 5 * mm; 422 G4double electricPlateSpacing1 = 3 * mm; 420 G4double electricPlateSpacing1 = 3 * mm; 423 G4double electricPlateSpacing2 = 4 * mm; 421 G4double electricPlateSpacing2 = 4 * mm; 424 422 425 // APPLY VOLTAGE HERE IN VOLTS (no electrost 423 // APPLY VOLTAGE HERE IN VOLTS (no electrostatic deflection here) 426 G4double electricPlateVoltage1 = 0 * volt; 424 G4double electricPlateVoltage1 = 0 * volt; 427 G4double electricPlateVoltage2 = 0 * volt; 425 G4double electricPlateVoltage2 = 0 * volt; 428 426 429 G4double electricFieldPlate1 = electricPlate 427 G4double electricFieldPlate1 = electricPlateVoltage1 / electricPlateSpacing1 ; 430 G4double electricFieldPlate2 = electricPlate 428 G4double electricFieldPlate2 = electricPlateVoltage2 / electricPlateSpacing2 ; 431 429 432 G4double beginFirstZoneX = lineX + (8*quadH 430 G4double beginFirstZoneX = lineX + (8*quadHalfLength+3*quadSpacing)*std::sin(lineAngle); 433 G4double beginFirstZoneZ = lineZ + (8*quadH 431 G4double beginFirstZoneZ = lineZ + (8*quadHalfLength+3*quadSpacing)*std::cos(lineAngle); 434 432 435 G4double beginSecondZoneX = lineX + (8*quad 433 G4double beginSecondZoneX = lineX + (8*quadHalfLength+3*quadSpacing+electricPlateLength1+electricPlateGap)*std::sin(lineAngle); 436 G4double beginSecondZoneZ = lineZ + (8*quad 434 G4double beginSecondZoneZ = lineZ + (8*quadHalfLength+3*quadSpacing+electricPlateLength1+electricPlateGap)*std::cos(lineAngle); 437 435 438 G4double xA, zA, xB, zB, xC, zC, xD, zD; 436 G4double xA, zA, xB, zB, xC, zC, xD, zD; 439 G4double slope1, cte1, slope2, cte2, slope3, 437 G4double slope1, cte1, slope2, cte2, slope3, cte3, slope4, cte4; 440 438 441 // WARNING : lineAngle < 0 439 // WARNING : lineAngle < 0 442 440 443 // FIRST PLATES 441 // FIRST PLATES 444 442 445 xA = beginFirstZoneX + std::cos(lineAngle)*e 443 xA = beginFirstZoneX + std::cos(lineAngle)*electricPlateSpacing1/2; 446 zA = beginFirstZoneZ - std::sin(lineAngle)*e 444 zA = beginFirstZoneZ - std::sin(lineAngle)*electricPlateSpacing1/2; 447 445 448 xB = xA + std::sin(lineAngle)*electricPlateL 446 xB = xA + std::sin(lineAngle)*electricPlateLength1; 449 zB = zA + std::cos(lineAngle)*electricPlateL 447 zB = zA + std::cos(lineAngle)*electricPlateLength1; 450 448 451 xC = xB - std::cos(lineAngle)*electricPlateS 449 xC = xB - std::cos(lineAngle)*electricPlateSpacing1; 452 zC = zB + std::sin(lineAngle)*electricPlateS 450 zC = zB + std::sin(lineAngle)*electricPlateSpacing1; 453 451 454 xD = xC - std::sin(lineAngle)*electricPlateL 452 xD = xC - std::sin(lineAngle)*electricPlateLength1; 455 zD = zC - std::cos(lineAngle)*electricPlateL 453 zD = zC - std::cos(lineAngle)*electricPlateLength1; 456 454 457 slope1 = (xB-xA)/(zB-zA); 455 slope1 = (xB-xA)/(zB-zA); 458 cte1 = xA - slope1 * zA; 456 cte1 = xA - slope1 * zA; 459 457 460 slope2 = (xC-xB)/(zC-zB); 458 slope2 = (xC-xB)/(zC-zB); 461 cte2 = xB - slope2 * zB; 459 cte2 = xB - slope2 * zB; 462 460 463 slope3 = (xD-xC)/(zD-zC); 461 slope3 = (xD-xC)/(zD-zC); 464 cte3 = xC - slope3 * zC; 462 cte3 = xC - slope3 * zC; 465 463 466 slope4 = (xA-xD)/(zA-zD); 464 slope4 = (xA-xD)/(zA-zD); 467 cte4 = xD - slope4 * zD; 465 cte4 = xD - slope4 * zD; 468 466 469 467 470 if 468 if 471 ( 469 ( 472 x <= slope1 * z + cte1 << 470 x <= slope1 * z + cte1 473 && x >= slope3 * z + cte3 << 471 && x >= slope3 * z + cte3 474 && x <= slope4 * z + cte4 << 472 && x <= slope4 * z + cte4 475 && x >= slope2 * z + cte2 << 473 && x >= slope2 * z + cte2 476 && std::abs(y)<=electricPlateWidth1/2 << 474 && std::abs(y)<=electricPlateWidth1/2 477 ) 475 ) 478 476 479 { 477 { 480 Bfield[3] = electricFieldPlate1*std::cos 478 Bfield[3] = electricFieldPlate1*std::cos(lineAngle); 481 Bfield[4] = 0; 479 Bfield[4] = 0; 482 Bfield[5] = -electricFieldPlate1*std::si 480 Bfield[5] = -electricFieldPlate1*std::sin(lineAngle); 483 481 484 } 482 } 485 483 486 // SECOND PLATES 484 // SECOND PLATES 487 485 488 xA = beginSecondZoneX + std::cos(lineAngle)* 486 xA = beginSecondZoneX + std::cos(lineAngle)*electricPlateWidth2/2; 489 zA = beginSecondZoneZ - std::sin(lineAngle)* 487 zA = beginSecondZoneZ - std::sin(lineAngle)*electricPlateWidth2/2; 490 488 491 xB = xA + std::sin(lineAngle)*electricPlateL 489 xB = xA + std::sin(lineAngle)*electricPlateLength2; 492 zB = zA + std::cos(lineAngle)*electricPlateL 490 zB = zA + std::cos(lineAngle)*electricPlateLength2; 493 491 494 xC = xB - std::cos(lineAngle)*electricPlateW 492 xC = xB - std::cos(lineAngle)*electricPlateWidth2; 495 zC = zB + std::sin(lineAngle)*electricPlateW 493 zC = zB + std::sin(lineAngle)*electricPlateWidth2; 496 494 497 xD = xC - std::sin(lineAngle)*electricPlateL 495 xD = xC - std::sin(lineAngle)*electricPlateLength2; 498 zD = zC - std::cos(lineAngle)*electricPlateL 496 zD = zC - std::cos(lineAngle)*electricPlateLength2; 499 497 500 slope1 = (xB-xA)/(zB-zA); 498 slope1 = (xB-xA)/(zB-zA); 501 cte1 = xA - slope1 * zA; 499 cte1 = xA - slope1 * zA; 502 500 503 slope2 = (xC-xB)/(zC-zB); 501 slope2 = (xC-xB)/(zC-zB); 504 cte2 = xB - slope2 * zB; 502 cte2 = xB - slope2 * zB; 505 503 506 slope3 = (xD-xC)/(zD-zC); 504 slope3 = (xD-xC)/(zD-zC); 507 cte3 = xC - slope3 * zC; 505 cte3 = xC - slope3 * zC; 508 506 509 slope4 = (xA-xD)/(zA-zD); 507 slope4 = (xA-xD)/(zA-zD); 510 cte4 = xD - slope4 * zD; 508 cte4 = xD - slope4 * zD; 511 509 512 if 510 if 513 ( 511 ( 514 x <= slope1 * z + cte1 << 512 x <= slope1 * z + cte1 515 && x >= slope3 * z + cte3 << 513 && x >= slope3 * z + cte3 516 && x <= slope4 * z + cte4 << 514 && x <= slope4 * z + cte4 517 && x >= slope2 * z + cte2 << 515 && x >= slope2 * z + cte2 518 && std::abs(y)<=electricPlateSpacing2/2 << 516 && std::abs(y)<=electricPlateSpacing2/2 519 ) 517 ) 520 518 521 { 519 { 522 Bfield[3] = 0; 520 Bfield[3] = 0; 523 Bfield[4] = electricFieldPlate2; 521 Bfield[4] = electricFieldPlate2; 524 Bfield[5] = 0; 522 Bfield[5] = 0; 525 } 523 } >> 524 >> 525 // 526 526 527 } 527 } 528 528