Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/advanced/microbeam/README

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/advanced/microbeam/README (Version 11.3.0) and /examples/advanced/microbeam/README (Version 9.4.p3)


  1 ----------------------------------------------      1 -------------------------------------------------------------------
                                                   >>   2 $Id: README,v 1.12 2010-10-07 14:03:11 sincerti Exp $
  2 ----------------------------------------------      3 -------------------------------------------------------------------
  3                                                     4 
  4      =========================================      5      =========================================================
  5       Geant4 - Microbeam example                    6       Geant4 - Microbeam example
  6      =========================================      7      =========================================================
  7                                                     8 
  8                                 README file         9                                 README file
  9                           --------------------     10                           ----------------------
 10                                                    11 
 11                            CORRESPONDING AUTHO     12                            CORRESPONDING AUTHOR 
 12                                                    13 
 13 S. Incerti (a, *) et al.                           14 S. Incerti (a, *) et al.
 14 a. Centre d'Etudes Nucleaires de Bordeaux-Grad     15 a. Centre d'Etudes Nucleaires de Bordeaux-Gradignan 
 15 (CENBG), IN2P3 / CNRS / Bordeaux 1 University,     16 (CENBG), IN2P3 / CNRS / Bordeaux 1 University, 33175 Gradignan, France
 16 * e-mail:incerti@cenbg.in2p3.fr                    17 * e-mail:incerti@cenbg.in2p3.fr
 17                                                    18 
                                                   >>  19 Last modified by S. Incerti, 07/10/2010
                                                   >>  20 
 18 ---->0. INTRODUCTION.                              21 ---->0. INTRODUCTION.                                                    
 19                                                    22                                                                        
 20 The microbeam example simulates the cellular i     23 The microbeam example simulates the cellular irradiation beam line 
 21 installed on the AIFIRA electrostatic accelera     24 installed on the AIFIRA electrostatic accelerator facility located at 
 22 CENBG, Bordeaux-Gradignan, France. For more in     25 CENBG, Bordeaux-Gradignan, France. For more information on this facility, 
 23 please visit :                                     26 please visit :
 24 http://www.cenbg.in2p3.fr/                         27 http://www.cenbg.in2p3.fr/
 25                                                    28 
                                                   >>  29 An overall description of this example is also available in this directory:
                                                   >>  30 to access it, simply open the microbeam.htm file with your internet browser.
                                                   >>  31 
 26 ---->1. GEOMETRY SET-UP.                           32 ---->1. GEOMETRY SET-UP.
 27                                                    33  
 28 The elements simulated are:                        34 The elements simulated are:
 29                                                    35 
 30 1. A switching dipole magnet with fringing fie     36 1. A switching dipole magnet with fringing field, to deflect the 3 MeV alpha 
 31 beam generated by the electrostatic accelerato     37 beam generated by the electrostatic accelerator into the microbeam line, 
 32 oriented at 10 degrees from the main beam dire     38 oriented at 10 degrees from the main beam direction;
 33                                                    39 
 34 2. A circular collimator object, defining the      40 2. A circular collimator object, defining the incident beam size at the 
 35 microbeam line entrance;                           41 microbeam line entrance;
 36                                                    42 
 37 3. A quadrupole based magnetic symmetric focus     43 3. A quadrupole based magnetic symmetric focusing system allowing equal 
 38 transverse demagnifications of 10. Fringe fiel     44 transverse demagnifications of 10. Fringe fields are calculated from Enge's 
 39 model.                                             45 model.
 40                                                    46 
 41 4. A dedicated cellular irradiation chamber se     47 4. A dedicated cellular irradiation chamber setup;
 42                                                    48 
 43 5. A set of horizontal and vertical electrosta     49 5. A set of horizontal and vertical electrostatic deflecting plates which can 
 44 be turned on or off to deflect the beam on tar     50 be turned on or off to deflect the beam on target; 
 45                                                    51 
 46 6. A realistic human keratinocyte voxellized c     52 6. A realistic human keratinocyte voxellized cell observed from confocal 
 47 microscopy and taking into account realistic n     53 microscopy and taking into account realistic nucleus and cytoplasm chemical 
 48 compositions.                                  <<  54 compositions
 49                                                    55 
 50                                                    56 
 51 ---->2. EXPERIMENTAL SET-UP.                       57 ---->2. EXPERIMENTAL SET-UP.      
 52                                                    58                                  
 53 The beam is defined at the microbeam line entr     59 The beam is defined at the microbeam line entrance through a collimator 
 54 5 micrometer in diameter. The beam is then foc     60 5 micrometer in diameter. The beam is then focused onto target using a 
 55 quadruplet of quadrupoles in the so-called Dym     61 quadruplet of quadrupoles in the so-called Dymnikov magnetic configuration. 
 56 The beam is sent to the irradiation chamber wh     62 The beam is sent to the irradiation chamber where it travels through a 
 57 isobutane gas detector for counting purpose be     63 isobutane gas detector for counting purpose before reaching the polypropylene 
 58 culture foil of the target cell which is immer     64 culture foil of the target cell which is immersed in the growing medium and 
 59 enclosed within a dish.                            65 enclosed within a dish.  
 60                                                    66 
 61 A cell is placed on the polypropylene foil and     67 A cell is placed on the polypropylene foil and is irradiated using the 
 62 microbeam. The cell is represented through a 3     68 microbeam. The cell is represented through a 3D phantom (G4PVParameterization) 
 63 obtained from confocal microscopy. In the prov     69 obtained from confocal microscopy. In the provided example, the voxels sizes 
 64 are : 359 nm (X) x 359 nm (Y) x 163 nm (Z)         70 are : 359 nm (X) x 359 nm (Y) x 163 nm (Z)
 65                                                    71 
 66 The primary particle beam parameters are gener     72 The primary particle beam parameters are generated from experimental 
 67 measurements performed on the AIFIRA facility.     73 measurements performed on the AIFIRA facility. Incident particle used for 
 68 cellular irradiation are 3 MeV alpha particles     74 cellular irradiation are 3 MeV alpha particles.
 69                                                    75 
 70 More details on the experimental setup and its     76 More details on the experimental setup and its simulation with Geant4 can 
 71 be found in the following papers:              <<  77 be found in the following papers, which may be found on the SLAC-SPIRES
 72                                                <<  78 online database (http://www.slac.stanford.edu/spires/) :
 73 - IN SILICO NANODOSIMETRY: NEW INSIGHTS INTO N << 
 74 RADIATION                                      << 
 75 By Z. Kuncic, H. L. Byrne, A. L. McNamara, S.  << 
 76 Publsihed in Comp. Math. Meth. Med. (2012) 147 << 
 77                                                    79 
 78 - MONTE CARLO MICRODOSIMETRY FOR TARGETED IRRA     80 - MONTE CARLO MICRODOSIMETRY FOR TARGETED IRRADIATION OF INDIVIDUAL CELLS USING 
 79 A MICROBEAM FACILITY                               81 A MICROBEAM FACILITY 
 80 By S. Incerti, H. Seznec, M. Simon, Ph. Barber     82 By S. Incerti, H. Seznec, M. Simon, Ph. Barberet, C. Habchi, Ph. Moretto
 81 Published in Rad. Prot. Dos. 133, 1 (2009) 2-1     83 Published in Rad. Prot. Dos. 133, 1 (2009) 2-11
 82                                                    84 
 83 - MONTE CARLO SIMULATION OF THE CENBG MICROBEA     85 - MONTE CARLO SIMULATION OF THE CENBG MICROBEAM AND NANOBEAM LINES WITH THE
 84 GEANT4 TOOLKIT                                     86 GEANT4 TOOLKIT
 85 By S. Incerti, Q. Zhang, F. Andersson, Ph. Mor     87 By S. Incerti, Q. Zhang, F. Andersson, Ph. Moretto, G.W. Grime, 
 86 M.J. Merchant, D.T. Nguyen, C. Habchi, T. Pout     88 M.J. Merchant, D.T. Nguyen, C. Habchi, T. Pouthier and H. Seznec
 87 Published in Nucl. Instrum. and Meth. B 260 (2     89 Published in Nucl. Instrum. and Meth. B 260 (2007) 20-27
 88                                                    90 
 89 - A COMPARISON OF CELLULAR IRRADIATION TECHNIQ     91 - A COMPARISON OF CELLULAR IRRADIATION TECHNIQUES WITH ALPHA PARTICLES USING 
 90 THE GEANT4 MONTE CARLO SIMULATION TOOLKIT          92 THE GEANT4 MONTE CARLO SIMULATION TOOLKIT
 91 By S. Incerti, N. Gault, C. Habchi, J.L.. Lefa     93 By S. Incerti, N. Gault, C. Habchi, J.L.. Lefaix, Ph. Moretto, J.L.. Poncy, 
 92 T. Pouthier, H. Seznec. Dec 2006. 3pp.             94 T. Pouthier, H. Seznec. Dec 2006. 3pp.
 93 Published in Rad. Prot. Dos. 122, 1-4, (2006)      95 Published in Rad. Prot. Dos. 122, 1-4, (2006) 327-329
 94                                                    96 
 95 - GEANT4 SIMULATION OF THE NEW CENBG MICRO AND     97 - GEANT4 SIMULATION OF THE NEW CENBG MICRO AND NANO PROBES FACILITY
 96 By S. Incerti, C. Habchi, Ph. Moretto, J. Oliv     98 By S. Incerti, C. Habchi, Ph. Moretto, J. Olivier and H. Seznec. May 2006. 5pp.
 97 Published in Nucl.Instrum.Meth.B249:738-742, 2     99 Published in Nucl.Instrum.Meth.B249:738-742, 2006
 98                                                   100 
 99 - A COMPARISON OF RAY-TRACING SOFTWARE FOR THE    101 - A COMPARISON OF RAY-TRACING SOFTWARE FOR THE DESIGN OF QUADRUPOLE MICROBEAM 
100 SYSTEMS                                           102 SYSTEMS
101 By S. Incerti et al.,                             103 By S. Incerti et al., 
102 Published in Nucl.Instrum.Meth.B231:76-85, 200    104 Published in Nucl.Instrum.Meth.B231:76-85, 2005
103                                                   105 
104 - DEVELOPMENT OF A FOCUSED CHARGED PARTICLE MI    106 - DEVELOPMENT OF A FOCUSED CHARGED PARTICLE MICROBEAM FOR THE IRRADIATION OF 
105 INDIVIDUAL CELLS.                                 107 INDIVIDUAL CELLS.
106 By Ph. Barberet, A. Balana, S. Incerti, C. Mic    108 By Ph. Barberet, A. Balana, S. Incerti, C. Michelet-Habchi, Ph. Moretto, 
107 Th. Pouthier. Dec 2004. 6pp.                      109 Th. Pouthier. Dec 2004. 6pp. 
108 Published in Rev.Sci.Instrum.76:015101, 2005      110 Published in Rev.Sci.Instrum.76:015101, 2005
109                                                   111 
110 - SIMULATION OF CELLULAR IRRADIATION WITH THE     112 - SIMULATION OF CELLULAR IRRADIATION WITH THE CENBG MICROBEAM LINE USING 
111 GEANT4.                                           113 GEANT4.
112 By S. Incerti, Ph. Barberet, R. Villeneuve, P.    114 By S. Incerti, Ph. Barberet, R. Villeneuve, P. Aguer, E. Gontier, 
113 C. Michelet-Habchi, Ph. Moretto, D.T. Nguyen,     115 C. Michelet-Habchi, Ph. Moretto, D.T. Nguyen, T. Pouthier, R.W. Smith. Oct 2003. 6pp. 
114 Published in IEEE Trans.Nucl.Sci.51:1395-1401,    116 Published in IEEE Trans.Nucl.Sci.51:1395-1401, 2004
115                                                   117 
116 - SIMULATION OF ION PROPAGATION IN THE MICROBE    118 - SIMULATION OF ION PROPAGATION IN THE MICROBEAM LINE OF CENBG USING 
117 GEANT4.                                           119 GEANT4.
118 By S. Incerti, Ph. Barberet, B. Courtois, C. M    120 By S. Incerti, Ph. Barberet, B. Courtois, C. Michelet-Habchi, 
119 Ph. Moretto. Sep 2003.                            121 Ph. Moretto. Sep 2003. 
120 Published in Nucl.Instrum.Meth.B210:92-97, 200    122 Published in Nucl.Instrum.Meth.B210:92-97, 2003
121                                                   123 
122                                                   124 
123 ---->3 VISUALIZATION                           << 125 ------->3 VISUALIZATION
124                                                   126 
125 The user can visualize the targeted cell thank << 127 The user can visualize the targeted cell by uncommenting the following line in
                                                   >> 128 microbeam.mac:
                                                   >> 129 #/control/execute vis.mac
126                                                   130 
127 ---->4. HOW TO RUN THE EXAMPLE                    131 ---->4. HOW TO RUN THE EXAMPLE                                         
                                                   >> 132 
                                                   >> 133 The variable G4ANALYSIS_USE must be set to 1.
                                                   >> 134 
                                                   >> 135 In order to generate histograms, at least one of the AIDA implementations should be 
                                                   >> 136  available.
128                                                   137   
129 The code should be compiled with cmake.        << 138 The code should be compiled with gmake and run with :
130                                                   139 
131 Run the example from your build directory with << 140 > $G4WORDIR/bin/$G4SYSTEM/Microbeam
132 ./microbeam microbeam.mac                      << 
133                                                   141 
134 or in interactive mode:                        << 142 The macro file microbeam.mac is read by default.
135 ./microbeam                                    << 
136                                                   143 
137 The example works in MT mode.                  << 
138                                                   144 
139 ---->5. PHYSICS                                   145 ---->5. PHYSICS
140                                                   146 
141 Livermore physics list is used by default.     << 147 Livermore, Binary and Binary_ion physics lists are used by default,
                                                   >> 148 see microbeam.mac
142                                                   149 
143 ---->6. SIMULATION OUTPUT AND RESULT ANALYZIS     150 ---->6. SIMULATION OUTPUT AND RESULT ANALYZIS                                    
144                                                   151 
145 The output results consist in a microbeam.root << 152 The output results consist in several a microbeam.root file, containing several
146 containing several ntuples:                    << 153 ntuples:
147                                                   154 
148 * total deposited dose in the cell nucleus and    155 * total deposited dose in the cell nucleus and in the cell 
149 cytoplasm by each incident alpha particle;        156 cytoplasm by each incident alpha particle;
150                                                   157 
151 * average on the whole run of the dose deposit    158 * average on the whole run of the dose deposited per 
152 Voxel per incident alpha particle;                159 Voxel per incident alpha particle;
153                                                   160 
154 * final stopping (x,y,z) position of the incid    161 * final stopping (x,y,z) position of the incident 
155 alpha particle within the irradiated medium (c << 162 alpha particle within the irradiated medium (cell or culture medium)
156                                                   163 
157 * stopping power dE/dx of the incident            164 * stopping power dE/dx of the incident 
158 alpha particle just before penetrating into th    165 alpha particle just before penetrating into the targeted cell;
159                                                   166 
160 * beam transverse position distribution (X and << 167 * beam transverse position distribution(X and Y) 
161 just before penetrating into the targeted cell    168 just before penetrating into the targeted cell;
162                                                   169 
163 These results can be easily analyzed using for    170 These results can be easily analyzed using for example the provided ROOT macro 
164 file plot.C; to do so :                           171 file plot.C; to do so :
165 * be sure to have ROOT installed on your machi    172 * be sure to have ROOT installed on your machine
166 * be sure to be in the directory where the out << 173 * be sure to be in the microbeam directory
167 * do: root plot.C                              << 174 * launch ROOT by typing root
168 * or under your ROOT session, type in : .X plo << 175 * under your ROOT session, type in : .X plot.C to execute the macro file
                                                   >> 176 
169                                                   177 
170 ----------------------------------------------    178 ---------------------------------------------------------------------------
171                                                   179 
172 Should you have any enquiry, please do not hes    180 Should you have any enquiry, please do not hesitate to contact: 
173 incerti@cenbg.in2p3.fr                            181 incerti@cenbg.in2p3.fr