Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/advanced/microbeam/README

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/advanced/microbeam/README (Version 11.3.0) and /examples/advanced/microbeam/README (Version 10.4.p3)


  1 ----------------------------------------------      1 -------------------------------------------------------------------
                                                   >>   2 $Id: README 70524 2013-05-31 16:36:26Z gcosmo $
  2 ----------------------------------------------      3 -------------------------------------------------------------------
  3                                                     4 
  4      =========================================      5      =========================================================
  5       Geant4 - Microbeam example                    6       Geant4 - Microbeam example
  6      =========================================      7      =========================================================
  7                                                     8 
  8                                 README file         9                                 README file
  9                           --------------------     10                           ----------------------
 10                                                    11 
 11                            CORRESPONDING AUTHO     12                            CORRESPONDING AUTHOR 
 12                                                    13 
 13 S. Incerti (a, *) et al.                           14 S. Incerti (a, *) et al.
 14 a. Centre d'Etudes Nucleaires de Bordeaux-Grad     15 a. Centre d'Etudes Nucleaires de Bordeaux-Gradignan 
 15 (CENBG), IN2P3 / CNRS / Bordeaux 1 University,     16 (CENBG), IN2P3 / CNRS / Bordeaux 1 University, 33175 Gradignan, France
 16 * e-mail:incerti@cenbg.in2p3.fr                    17 * e-mail:incerti@cenbg.in2p3.fr
 17                                                    18 
 18 ---->0. INTRODUCTION.                              19 ---->0. INTRODUCTION.                                                    
 19                                                    20                                                                        
 20 The microbeam example simulates the cellular i     21 The microbeam example simulates the cellular irradiation beam line 
 21 installed on the AIFIRA electrostatic accelera     22 installed on the AIFIRA electrostatic accelerator facility located at 
 22 CENBG, Bordeaux-Gradignan, France. For more in     23 CENBG, Bordeaux-Gradignan, France. For more information on this facility, 
 23 please visit :                                     24 please visit :
 24 http://www.cenbg.in2p3.fr/                         25 http://www.cenbg.in2p3.fr/
 25                                                    26 
 26 ---->1. GEOMETRY SET-UP.                           27 ---->1. GEOMETRY SET-UP.
 27                                                    28  
 28 The elements simulated are:                        29 The elements simulated are:
 29                                                    30 
 30 1. A switching dipole magnet with fringing fie     31 1. A switching dipole magnet with fringing field, to deflect the 3 MeV alpha 
 31 beam generated by the electrostatic accelerato     32 beam generated by the electrostatic accelerator into the microbeam line, 
 32 oriented at 10 degrees from the main beam dire     33 oriented at 10 degrees from the main beam direction;
 33                                                    34 
 34 2. A circular collimator object, defining the      35 2. A circular collimator object, defining the incident beam size at the 
 35 microbeam line entrance;                           36 microbeam line entrance;
 36                                                    37 
 37 3. A quadrupole based magnetic symmetric focus     38 3. A quadrupole based magnetic symmetric focusing system allowing equal 
 38 transverse demagnifications of 10. Fringe fiel     39 transverse demagnifications of 10. Fringe fields are calculated from Enge's 
 39 model.                                             40 model.
 40                                                    41 
 41 4. A dedicated cellular irradiation chamber se     42 4. A dedicated cellular irradiation chamber setup;
 42                                                    43 
 43 5. A set of horizontal and vertical electrosta     44 5. A set of horizontal and vertical electrostatic deflecting plates which can 
 44 be turned on or off to deflect the beam on tar     45 be turned on or off to deflect the beam on target; 
 45                                                    46 
 46 6. A realistic human keratinocyte voxellized c     47 6. A realistic human keratinocyte voxellized cell observed from confocal 
 47 microscopy and taking into account realistic n     48 microscopy and taking into account realistic nucleus and cytoplasm chemical 
 48 compositions.                                      49 compositions.
 49                                                    50 
 50                                                    51 
 51 ---->2. EXPERIMENTAL SET-UP.                       52 ---->2. EXPERIMENTAL SET-UP.      
 52                                                    53                                  
 53 The beam is defined at the microbeam line entr     54 The beam is defined at the microbeam line entrance through a collimator 
 54 5 micrometer in diameter. The beam is then foc     55 5 micrometer in diameter. The beam is then focused onto target using a 
 55 quadruplet of quadrupoles in the so-called Dym     56 quadruplet of quadrupoles in the so-called Dymnikov magnetic configuration. 
 56 The beam is sent to the irradiation chamber wh     57 The beam is sent to the irradiation chamber where it travels through a 
 57 isobutane gas detector for counting purpose be     58 isobutane gas detector for counting purpose before reaching the polypropylene 
 58 culture foil of the target cell which is immer     59 culture foil of the target cell which is immersed in the growing medium and 
 59 enclosed within a dish.                            60 enclosed within a dish.  
 60                                                    61 
 61 A cell is placed on the polypropylene foil and     62 A cell is placed on the polypropylene foil and is irradiated using the 
 62 microbeam. The cell is represented through a 3     63 microbeam. The cell is represented through a 3D phantom (G4PVParameterization) 
 63 obtained from confocal microscopy. In the prov     64 obtained from confocal microscopy. In the provided example, the voxels sizes 
 64 are : 359 nm (X) x 359 nm (Y) x 163 nm (Z)         65 are : 359 nm (X) x 359 nm (Y) x 163 nm (Z)
 65                                                    66 
 66 The primary particle beam parameters are gener     67 The primary particle beam parameters are generated from experimental 
 67 measurements performed on the AIFIRA facility.     68 measurements performed on the AIFIRA facility. Incident particle used for 
 68 cellular irradiation are 3 MeV alpha particles     69 cellular irradiation are 3 MeV alpha particles.
 69                                                    70 
 70 More details on the experimental setup and its     71 More details on the experimental setup and its simulation with Geant4 can 
 71 be found in the following papers:                  72 be found in the following papers:
 72                                                    73 
 73 - IN SILICO NANODOSIMETRY: NEW INSIGHTS INTO N     74 - IN SILICO NANODOSIMETRY: NEW INSIGHTS INTO NON-TARGETED BIOLOGICAL RESPONSES TO 
 74 RADIATION                                          75 RADIATION
 75 By Z. Kuncic, H. L. Byrne, A. L. McNamara, S.      76 By Z. Kuncic, H. L. Byrne, A. L. McNamara, S. Guatelli, W. Domanova, S. Incerti
 76 Publsihed in Comp. Math. Meth. Med. (2012) 147     77 Publsihed in Comp. Math. Meth. Med. (2012) 147252 
 77                                                    78 
 78 - MONTE CARLO MICRODOSIMETRY FOR TARGETED IRRA     79 - MONTE CARLO MICRODOSIMETRY FOR TARGETED IRRADIATION OF INDIVIDUAL CELLS USING 
 79 A MICROBEAM FACILITY                               80 A MICROBEAM FACILITY 
 80 By S. Incerti, H. Seznec, M. Simon, Ph. Barber     81 By S. Incerti, H. Seznec, M. Simon, Ph. Barberet, C. Habchi, Ph. Moretto
 81 Published in Rad. Prot. Dos. 133, 1 (2009) 2-1     82 Published in Rad. Prot. Dos. 133, 1 (2009) 2-11
 82                                                    83 
 83 - MONTE CARLO SIMULATION OF THE CENBG MICROBEA     84 - MONTE CARLO SIMULATION OF THE CENBG MICROBEAM AND NANOBEAM LINES WITH THE
 84 GEANT4 TOOLKIT                                     85 GEANT4 TOOLKIT
 85 By S. Incerti, Q. Zhang, F. Andersson, Ph. Mor     86 By S. Incerti, Q. Zhang, F. Andersson, Ph. Moretto, G.W. Grime, 
 86 M.J. Merchant, D.T. Nguyen, C. Habchi, T. Pout     87 M.J. Merchant, D.T. Nguyen, C. Habchi, T. Pouthier and H. Seznec
 87 Published in Nucl. Instrum. and Meth. B 260 (2     88 Published in Nucl. Instrum. and Meth. B 260 (2007) 20-27
 88                                                    89 
 89 - A COMPARISON OF CELLULAR IRRADIATION TECHNIQ     90 - A COMPARISON OF CELLULAR IRRADIATION TECHNIQUES WITH ALPHA PARTICLES USING 
 90 THE GEANT4 MONTE CARLO SIMULATION TOOLKIT          91 THE GEANT4 MONTE CARLO SIMULATION TOOLKIT
 91 By S. Incerti, N. Gault, C. Habchi, J.L.. Lefa     92 By S. Incerti, N. Gault, C. Habchi, J.L.. Lefaix, Ph. Moretto, J.L.. Poncy, 
 92 T. Pouthier, H. Seznec. Dec 2006. 3pp.             93 T. Pouthier, H. Seznec. Dec 2006. 3pp.
 93 Published in Rad. Prot. Dos. 122, 1-4, (2006)      94 Published in Rad. Prot. Dos. 122, 1-4, (2006) 327-329
 94                                                    95 
 95 - GEANT4 SIMULATION OF THE NEW CENBG MICRO AND     96 - GEANT4 SIMULATION OF THE NEW CENBG MICRO AND NANO PROBES FACILITY
 96 By S. Incerti, C. Habchi, Ph. Moretto, J. Oliv     97 By S. Incerti, C. Habchi, Ph. Moretto, J. Olivier and H. Seznec. May 2006. 5pp.
 97 Published in Nucl.Instrum.Meth.B249:738-742, 2     98 Published in Nucl.Instrum.Meth.B249:738-742, 2006
 98                                                    99 
 99 - A COMPARISON OF RAY-TRACING SOFTWARE FOR THE    100 - A COMPARISON OF RAY-TRACING SOFTWARE FOR THE DESIGN OF QUADRUPOLE MICROBEAM 
100 SYSTEMS                                           101 SYSTEMS
101 By S. Incerti et al.,                             102 By S. Incerti et al., 
102 Published in Nucl.Instrum.Meth.B231:76-85, 200    103 Published in Nucl.Instrum.Meth.B231:76-85, 2005
103                                                   104 
104 - DEVELOPMENT OF A FOCUSED CHARGED PARTICLE MI    105 - DEVELOPMENT OF A FOCUSED CHARGED PARTICLE MICROBEAM FOR THE IRRADIATION OF 
105 INDIVIDUAL CELLS.                                 106 INDIVIDUAL CELLS.
106 By Ph. Barberet, A. Balana, S. Incerti, C. Mic    107 By Ph. Barberet, A. Balana, S. Incerti, C. Michelet-Habchi, Ph. Moretto, 
107 Th. Pouthier. Dec 2004. 6pp.                      108 Th. Pouthier. Dec 2004. 6pp. 
108 Published in Rev.Sci.Instrum.76:015101, 2005      109 Published in Rev.Sci.Instrum.76:015101, 2005
109                                                   110 
110 - SIMULATION OF CELLULAR IRRADIATION WITH THE     111 - SIMULATION OF CELLULAR IRRADIATION WITH THE CENBG MICROBEAM LINE USING 
111 GEANT4.                                           112 GEANT4.
112 By S. Incerti, Ph. Barberet, R. Villeneuve, P.    113 By S. Incerti, Ph. Barberet, R. Villeneuve, P. Aguer, E. Gontier, 
113 C. Michelet-Habchi, Ph. Moretto, D.T. Nguyen,     114 C. Michelet-Habchi, Ph. Moretto, D.T. Nguyen, T. Pouthier, R.W. Smith. Oct 2003. 6pp. 
114 Published in IEEE Trans.Nucl.Sci.51:1395-1401,    115 Published in IEEE Trans.Nucl.Sci.51:1395-1401, 2004
115                                                   116 
116 - SIMULATION OF ION PROPAGATION IN THE MICROBE    117 - SIMULATION OF ION PROPAGATION IN THE MICROBEAM LINE OF CENBG USING 
117 GEANT4.                                           118 GEANT4.
118 By S. Incerti, Ph. Barberet, B. Courtois, C. M    119 By S. Incerti, Ph. Barberet, B. Courtois, C. Michelet-Habchi, 
119 Ph. Moretto. Sep 2003.                            120 Ph. Moretto. Sep 2003. 
120 Published in Nucl.Instrum.Meth.B210:92-97, 200    121 Published in Nucl.Instrum.Meth.B210:92-97, 2003
121                                                   122 
122                                                   123 
123 ---->3 VISUALIZATION                              124 ---->3 VISUALIZATION
124                                                   125 
125 The user can visualize the targeted cell thank    126 The user can visualize the targeted cell thanks to the Qt interface.
126                                                   127 
127 ---->4. HOW TO RUN THE EXAMPLE                    128 ---->4. HOW TO RUN THE EXAMPLE                                         
128                                                   129   
129 The code should be compiled with cmake.           130 The code should be compiled with cmake.
130                                                   131 
131 Run the example from your build directory with    132 Run the example from your build directory with:
132 ./microbeam microbeam.mac                         133 ./microbeam microbeam.mac
133                                                   134 
134 or in interactive mode:                           135 or in interactive mode:
135 ./microbeam                                       136 ./microbeam
136                                                   137 
137 The example works in MT mode.                     138 The example works in MT mode.
138                                                   139 
139 ---->5. PHYSICS                                   140 ---->5. PHYSICS
140                                                   141 
141 Livermore physics list is used by default.        142 Livermore physics list is used by default.
142                                                   143 
143 ---->6. SIMULATION OUTPUT AND RESULT ANALYZIS     144 ---->6. SIMULATION OUTPUT AND RESULT ANALYZIS                                    
144                                                   145 
145 The output results consist in a microbeam.root    146 The output results consist in a microbeam.root file per thread, 
146 containing several ntuples:                       147 containing several ntuples:
147                                                   148 
148 * total deposited dose in the cell nucleus and    149 * total deposited dose in the cell nucleus and in the cell 
149 cytoplasm by each incident alpha particle;        150 cytoplasm by each incident alpha particle;
150                                                   151 
151 * average on the whole run of the dose deposit    152 * average on the whole run of the dose deposited per 
152 Voxel per incident alpha particle;                153 Voxel per incident alpha particle;
153                                                   154 
154 * final stopping (x,y,z) position of the incid    155 * final stopping (x,y,z) position of the incident 
155 alpha particle within the irradiated medium (c    156 alpha particle within the irradiated medium (cell or culture medium);
156                                                   157 
157 * stopping power dE/dx of the incident            158 * stopping power dE/dx of the incident 
158 alpha particle just before penetrating into th    159 alpha particle just before penetrating into the targeted cell;
159                                                   160 
160 * beam transverse position distribution (X and    161 * beam transverse position distribution (X and Y) 
161 just before penetrating into the targeted cell    162 just before penetrating into the targeted cell;
162                                                   163 
163 These results can be easily analyzed using for    164 These results can be easily analyzed using for example the provided ROOT macro 
164 file plot.C; to do so :                           165 file plot.C; to do so :
165 * be sure to have ROOT installed on your machi    166 * be sure to have ROOT installed on your machine
166 * be sure to be in the directory where the out    167 * be sure to be in the directory where the output ROOT files have been created
167 * do: root plot.C                                 168 * do: root plot.C
168 * or under your ROOT session, type in : .X plo    169 * or under your ROOT session, type in : .X plot.C to execute the macro file
169                                                   170 
170 ----------------------------------------------    171 ---------------------------------------------------------------------------
171                                                   172 
172 Should you have any enquiry, please do not hes    173 Should you have any enquiry, please do not hesitate to contact: 
173 incerti@cenbg.in2p3.fr                            174 incerti@cenbg.in2p3.fr