Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Hadrontherapy advanced example for Geant4 << 26 // ************************************* 27 // See more at: https://twiki.cern.ch/twiki/bi << 27 // * * >> 28 // * HadrontherapyMagneticField3D.cc * >> 29 // * * >> 30 // ************************************* >> 31 // >> 32 // 28 33 29 #include "HadrontherapyMagneticField3D.hh" 34 #include "HadrontherapyMagneticField3D.hh" 30 #include "G4SystemOfUnits.hh" 35 #include "G4SystemOfUnits.hh" 31 #include "G4AutoLock.hh" 36 #include "G4AutoLock.hh" 32 37 33 namespace{ G4Mutex MyHadrontherapyLock=G4MUTE 38 namespace{ G4Mutex MyHadrontherapyLock=G4MUTEX_INITIALIZER; } 34 39 35 using namespace std; << 40 HadrontherapyMagneticField3D::HadrontherapyMagneticField3D( const char* filename, double xOffset ) 36 << 37 HadrontherapyMagneticField3D::HadrontherapyMag << 38 :fXoffset(xOffset),invertX(false),invertY(fa 41 :fXoffset(xOffset),invertX(false),invertY(false),invertZ(false) 39 { << 42 { 40 //The format file is: X Y Z Ex Ey Ez 43 //The format file is: X Y Z Ex Ey Ez 41 44 42 double lenUnit= meter; << 45 double lenUnit= meter; 43 double fieldUnit= tesla; << 46 double fieldUnit= tesla; 44 G4cout << "\n------------------------------- 47 G4cout << "\n-----------------------------------------------------------" 45 << "\n Magnetic field" 48 << "\n Magnetic field" 46 << "\n------------------------------------- 49 << "\n-----------------------------------------------------------"; 47 50 48 51 49 G4cout << "\n ---> " "Reading the field grid << 52 G4cout << "\n ---> " "Reading the field grid from " << filename << " ... " << endl; 50 G4AutoLock lock(&MyHadrontherapyLock); 53 G4AutoLock lock(&MyHadrontherapyLock); 51 54 52 ifstream file( filename ); // Open the file 55 ifstream file( filename ); // Open the file for reading. 53 << 56 54 // Ignore first blank line 57 // Ignore first blank line 55 char buffer[256]; 58 char buffer[256]; 56 file.getline(buffer,256); 59 file.getline(buffer,256); 57 << 60 58 // Read table dimensions << 61 // Read table dimensions 59 file >> nx >> ny >> nz; // Note dodgy order 62 file >> nx >> ny >> nz; // Note dodgy order 60 63 61 G4cout << " [ Number of values x,y,z: " << 64 G4cout << " [ Number of values x,y,z: " 62 << nx << " " << ny << " " << nz << " ] " 65 << nx << " " << ny << " " << nz << " ] " 63 << G4endl; << 66 << endl; 64 67 65 // Set up storage space for table 68 // Set up storage space for table 66 xField.resize( nx ); 69 xField.resize( nx ); 67 yField.resize( nx ); 70 yField.resize( nx ); 68 zField.resize( nx ); 71 zField.resize( nx ); 69 int ix, iy, iz; 72 int ix, iy, iz; 70 for (ix=0; ix<nx; ix++) { 73 for (ix=0; ix<nx; ix++) { 71 xField[ix].resize(ny); 74 xField[ix].resize(ny); 72 yField[ix].resize(ny); 75 yField[ix].resize(ny); 73 zField[ix].resize(ny); 76 zField[ix].resize(ny); 74 for (iy=0; iy<ny; iy++) { 77 for (iy=0; iy<ny; iy++) { 75 xField[ix][iy].resize(nz); 78 xField[ix][iy].resize(nz); 76 yField[ix][iy].resize(nz); 79 yField[ix][iy].resize(nz); 77 zField[ix][iy].resize(nz); 80 zField[ix][iy].resize(nz); 78 } 81 } 79 } 82 } 80 83 81 // Read in the data 84 // Read in the data 82 G4double xval=0.; 85 G4double xval=0.; 83 G4double yval=0.; 86 G4double yval=0.; 84 G4double zval=0.; 87 G4double zval=0.; 85 G4double bx=0.; 88 G4double bx=0.; 86 G4double by=0.; 89 G4double by=0.; 87 G4double bz=0.; 90 G4double bz=0.; 88 for (ix=0; ix<nx; ix++) { 91 for (ix=0; ix<nx; ix++) { 89 for (iy=0; iy<ny; iy++) { 92 for (iy=0; iy<ny; iy++) { 90 for (iz=0; iz<nz; iz++) { 93 for (iz=0; iz<nz; iz++) { 91 file >> xval >> yval >> zval >> bx >> 94 file >> xval >> yval >> zval >> bx >> by >> bz ; 92 if ( ix==0 && iy==0 && iz==0 ) { 95 if ( ix==0 && iy==0 && iz==0 ) { 93 minx = xval * lenUnit; 96 minx = xval * lenUnit; 94 miny = yval * lenUnit; 97 miny = yval * lenUnit; 95 minz = zval * lenUnit; 98 minz = zval * lenUnit; 96 } 99 } 97 xField[ix][iy][iz] = bx * fieldUnit; << 100 xField[ix][iy][iz] = bx * fieldUnit; 98 yField[ix][iy][iz] = by * fieldUnit; 101 yField[ix][iy][iz] = by * fieldUnit; 99 zField[ix][iy][iz] = bz * fieldUnit; 102 zField[ix][iy][iz] = bz * fieldUnit; 100 } 103 } 101 } 104 } 102 } 105 } 103 file.close(); 106 file.close(); 104 107 105 lock.unlock(); 108 lock.unlock(); 106 109 107 maxx = xval * lenUnit; 110 maxx = xval * lenUnit; 108 maxy = yval * lenUnit; 111 maxy = yval * lenUnit; 109 maxz = zval * lenUnit; 112 maxz = zval * lenUnit; 110 113 111 G4cout << "\n ---> ... done reading " << G4e << 114 G4cout << "\n ---> ... done reading " << endl; 112 115 113 // G4cout << " Read values of field from fil << 116 // G4cout << " Read values of field from file " << filename << endl; 114 G4cout << " ---> assumed the order: x, y, z 117 G4cout << " ---> assumed the order: x, y, z, Bx, By, Bz " 115 << "\n ---> Min values x,y,z: " << 118 << "\n ---> Min values x,y,z: " 116 << minx/cm << " " << miny/cm << " " << minz 119 << minx/cm << " " << miny/cm << " " << minz/cm << " cm " 117 << "\n ---> Max values x,y,z: " << 120 << "\n ---> Max values x,y,z: " 118 << maxx/cm << " " << maxy/cm << " " << maxz 121 << maxx/cm << " " << maxy/cm << " " << maxz/cm << " cm " 119 << "\n ---> The field will be offset by " < << 122 << "\n ---> The field will be offset by " << xOffset/cm << " cm " << endl; 120 123 121 // Should really check that the limits are n 124 // Should really check that the limits are not the wrong way around. 122 if (maxx < minx) {swap(maxx,minx); invertX = << 125 if (maxx < minx) {swap(maxx,minx); invertX = true;} 123 if (maxy < miny) {swap(maxy,miny); invertY = << 126 if (maxy < miny) {swap(maxy,miny); invertY = true;} 124 if (maxz < minz) {swap(maxz,minz); invertZ = << 127 if (maxz < minz) {swap(maxz,minz); invertZ = true;} 125 G4cout << "\nAfter reordering if neccesary" << 128 G4cout << "\nAfter reordering if neccesary" 126 << "\n ---> Min values x,y,z: " << 129 << "\n ---> Min values x,y,z: " 127 << minx/cm << " " << miny/cm << " " << minz 130 << minx/cm << " " << miny/cm << " " << minz/cm << " cm " 128 << " \n ---> Max values x,y,z: " << 131 << " \n ---> Max values x,y,z: " 129 << maxx/cm << " " << maxy/cm << " " << maxz 132 << maxx/cm << " " << maxy/cm << " " << maxz/cm << " cm "; 130 133 131 dx = maxx - minx; 134 dx = maxx - minx; 132 dy = maxy - miny; 135 dy = maxy - miny; 133 dz = maxz - minz; 136 dz = maxz - minz; 134 G4cout << "\n ---> Dif values x,y,z (range): << 137 G4cout << "\n ---> Dif values x,y,z (range): " 135 << dx/cm << " " << dy/cm << " " << dz/cm << 138 << dx/cm << " " << dy/cm << " " << dz/cm << " cm in z " 136 << "\n------------------------------------- << 139 << "\n-----------------------------------------------------------" << endl; 137 } 140 } 138 141 139 void HadrontherapyMagneticField3D::GetFieldVal 142 void HadrontherapyMagneticField3D::GetFieldValue(const double point[4], 140 double *Bfield ) const 143 double *Bfield ) const 141 { 144 { 142 double x = point[0]+ fXoffset; << 145 double x = point[0]+ fXoffset; 143 double y = point[1]; << 146 double y = point[1]; 144 double z = point[2]; << 147 double z = point[2]; 145 << 148 >> 149 // Check that the point is within the defined region >> 150 if ( x>=minx && x<maxx && >> 151 y>=miny && y<maxy && >> 152 z>=minz && z<maxz ) { 146 // Position of given point within region, 153 // Position of given point within region, normalized to the range 147 // [0,1] 154 // [0,1] 148 double xfraction = (x - minx) / dx; 155 double xfraction = (x - minx) / dx; 149 double yfraction = (y - miny) / dy; << 156 double yfraction = (y - miny) / dy; 150 double zfraction = (z - minz) / dz; 157 double zfraction = (z - minz) / dz; 151 158 152 if (invertX) { xfraction = 1 - xfraction;} 159 if (invertX) { xfraction = 1 - xfraction;} 153 if (invertY) { yfraction = 1 - yfraction;} 160 if (invertY) { yfraction = 1 - yfraction;} 154 if (invertZ) { zfraction = 1 - zfraction;} 161 if (invertZ) { zfraction = 1 - zfraction;} 155 162 156 // Need addresses of these to pass to modf 163 // Need addresses of these to pass to modf below. 157 // modf uses its second argument as an OUT 164 // modf uses its second argument as an OUTPUT argument. 158 double xdindex, ydindex, zdindex; 165 double xdindex, ydindex, zdindex; 159 << 166 160 // Position of the point within the cuboid 167 // Position of the point within the cuboid defined by the 161 // nearest surrounding tabulated points 168 // nearest surrounding tabulated points 162 double xlocal = ( std::modf(xfraction*(nx- 169 double xlocal = ( std::modf(xfraction*(nx-1), &xdindex)); 163 double ylocal = ( std::modf(yfraction*(ny- 170 double ylocal = ( std::modf(yfraction*(ny-1), &ydindex)); 164 double zlocal = ( std::modf(zfraction*(nz- 171 double zlocal = ( std::modf(zfraction*(nz-1), &zdindex)); 165 << 172 166 // The indices of the nearest tabulated po 173 // The indices of the nearest tabulated point whose coordinates 167 // are all less than those of the given po 174 // are all less than those of the given point 168 int xindex = static_cast<int>(std::floor(x << 175 int xindex = static_cast<int>(xdindex); 169 int yindex = static_cast<int>(std::floor(y << 176 int yindex = static_cast<int>(ydindex); 170 int zindex = static_cast<int>(std::floor(z << 177 int zindex = static_cast<int>(zdindex); 171 << 178 172 // Check that the point is within the de << 173 if ((xindex < 0) || (xindex >= nx - 1) || << 174 (yindex < 0) || (yindex >= ny - 1) || << 175 (zindex < 0) || (zindex >= nz - 1)) << 176 { << 177 Bfield[0] = 0.0; << 178 Bfield[1] = 0.0; << 179 Bfield[2] = 0.0; << 180 } << 181 else << 182 { << 183 179 184 #ifdef DEBUG_INTERPOLATING_FIELD 180 #ifdef DEBUG_INTERPOLATING_FIELD 185 G4cout << "Local x,y,z: " << xlocal << << 181 G4cout << "Local x,y,z: " << xlocal << " " << ylocal << " " << zlocal << endl; 186 G4cout << "Index x,y,z: " << xindex << << 182 G4cout << "Index x,y,z: " << xindex << " " << yindex << " " << zindex << endl; 187 double valx0z0, mulx0z0, valx1z0, mulx << 183 double valx0z0, mulx0z0, valx1z0, mulx1z0; 188 double valx0z1, mulx0z1, valx1z1, mulx << 184 double valx0z1, mulx0z1, valx1z1, mulx1z1; 189 valx0z0= table[xindex ][0][zindex]; << 185 valx0z0= table[xindex ][0][zindex]; mulx0z0= (1-xlocal) * (1-zlocal); 190 valx1z0= table[xindex+1][0][zindex]; << 186 valx1z0= table[xindex+1][0][zindex]; mulx1z0= xlocal * (1-zlocal); 191 valx0z1= table[xindex ][0][zindex+1]; << 187 valx0z1= table[xindex ][0][zindex+1]; mulx0z1= (1-xlocal) * zlocal; 192 valx1z1= table[xindex+1][0][zindex+1]; << 188 valx1z1= table[xindex+1][0][zindex+1]; mulx1z1= xlocal * zlocal; 193 #endif 189 #endif 194 << 195 // Full 3-dimensional version 190 // Full 3-dimensional version 196 Bfield[0] = << 191 Bfield[0] = 197 xField[xindex ][yindex ][zindex ] << 192 xField[xindex ][yindex ][zindex ] * (1-xlocal) * (1-ylocal) * (1-zlocal) + 198 xField[xindex ][yindex ][zindex+1] << 193 xField[xindex ][yindex ][zindex+1] * (1-xlocal) * (1-ylocal) * zlocal + 199 xField[xindex ][yindex+1][zindex ] << 194 xField[xindex ][yindex+1][zindex ] * (1-xlocal) * ylocal * (1-zlocal) + 200 xField[xindex ][yindex+1][zindex+1] << 195 xField[xindex ][yindex+1][zindex+1] * (1-xlocal) * ylocal * zlocal + 201 xField[xindex+1][yindex ][zindex ] << 196 xField[xindex+1][yindex ][zindex ] * xlocal * (1-ylocal) * (1-zlocal) + 202 xField[xindex+1][yindex ][zindex+1] << 197 xField[xindex+1][yindex ][zindex+1] * xlocal * (1-ylocal) * zlocal + 203 xField[xindex+1][yindex+1][zindex ] << 198 xField[xindex+1][yindex+1][zindex ] * xlocal * ylocal * (1-zlocal) + 204 xField[xindex+1][yindex+1][zindex+1] << 199 xField[xindex+1][yindex+1][zindex+1] * xlocal * ylocal * zlocal ; 205 << 200 206 Bfield[1] = << 201 Bfield[1] = 207 yField[xindex ][yindex ][zindex ] << 202 yField[xindex ][yindex ][zindex ] * (1-xlocal) * (1-ylocal) * (1-zlocal) + 208 yField[xindex ][yindex ][zindex+1] << 203 yField[xindex ][yindex ][zindex+1] * (1-xlocal) * (1-ylocal) * zlocal + 209 yField[xindex ][yindex+1][zindex ] << 204 yField[xindex ][yindex+1][zindex ] * (1-xlocal) * ylocal * (1-zlocal) + 210 yField[xindex ][yindex+1][zindex+1] << 205 yField[xindex ][yindex+1][zindex+1] * (1-xlocal) * ylocal * zlocal + 211 yField[xindex+1][yindex ][zindex ] << 206 yField[xindex+1][yindex ][zindex ] * xlocal * (1-ylocal) * (1-zlocal) + 212 yField[xindex+1][yindex ][zindex+1] << 207 yField[xindex+1][yindex ][zindex+1] * xlocal * (1-ylocal) * zlocal + 213 yField[xindex+1][yindex+1][zindex ] << 208 yField[xindex+1][yindex+1][zindex ] * xlocal * ylocal * (1-zlocal) + 214 yField[xindex+1][yindex+1][zindex+1] << 209 yField[xindex+1][yindex+1][zindex+1] * xlocal * ylocal * zlocal ; 215 << 210 216 Bfield[2] = << 211 Bfield[2] = 217 zField[xindex ][yindex ][zindex ] << 212 zField[xindex ][yindex ][zindex ] * (1-xlocal) * (1-ylocal) * (1-zlocal) + 218 zField[xindex ][yindex ][zindex+1] << 213 zField[xindex ][yindex ][zindex+1] * (1-xlocal) * (1-ylocal) * zlocal + 219 zField[xindex ][yindex+1][zindex ] << 214 zField[xindex ][yindex+1][zindex ] * (1-xlocal) * ylocal * (1-zlocal) + 220 zField[xindex ][yindex+1][zindex+1] << 215 zField[xindex ][yindex+1][zindex+1] * (1-xlocal) * ylocal * zlocal + 221 zField[xindex+1][yindex ][zindex ] << 216 zField[xindex+1][yindex ][zindex ] * xlocal * (1-ylocal) * (1-zlocal) + 222 zField[xindex+1][yindex ][zindex+1] << 217 zField[xindex+1][yindex ][zindex+1] * xlocal * (1-ylocal) * zlocal + 223 zField[xindex+1][yindex+1][zindex ] << 218 zField[xindex+1][yindex+1][zindex ] * xlocal * ylocal * (1-zlocal) + 224 zField[xindex+1][yindex+1][zindex+1] << 219 zField[xindex+1][yindex+1][zindex+1] * xlocal * ylocal * zlocal ; 225 } << 220 226 << 221 } else { >> 222 Bfield[0] = 0.0; >> 223 Bfield[1] = 0.0; >> 224 Bfield[2] = 0.0; >> 225 } 227 //In order to obtain the output file with the 226 //In order to obtain the output file with the magnetic components read from a particle passing in the magnetic field 228 /* std::ofstream MagneticField("MagneticField 227 /* std::ofstream MagneticField("MagneticField.out", std::ios::app); 229 MagneticField<< Bfield[0] << '\t' << " 228 MagneticField<< Bfield[0] << '\t' << " " 230 << Bfield[1] << '\t' << " " 229 << Bfield[1] << '\t' << " " 231 << Bfield[2] << '\t' << " " 230 << Bfield[2] << '\t' << " " 232 << point[0] << '\t' << " " 231 << point[0] << '\t' << " " 233 << point[1] << '\t' << " " 232 << point[1] << '\t' << " " 234 << point[2] << '\t' << " " 233 << point[2] << '\t' << " " 235 << std::endl;*/ << 234 << G4endl;*/ 236 << 235 237 } 236 } >> 237 238 238