Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/advanced/hadrontherapy/src/HadrontherapyMagneticField3D.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/advanced/hadrontherapy/src/HadrontherapyMagneticField3D.cc (Version 11.3.0) and /examples/advanced/hadrontherapy/src/HadrontherapyMagneticField3D.cc (Version 10.1.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Hadrontherapy advanced example for Geant4   <<  26 //    *************************************
 27 // See more at: https://twiki.cern.ch/twiki/bi <<  27 //    *                                   *
                                                   >>  28 //    *    HadrontherapyMagneticField3D.cc     *
                                                   >>  29 //    *                                   *
                                                   >>  30 //    *************************************
                                                   >>  31 //
                                                   >>  32 //
 28                                                    33 
 29 #include "HadrontherapyMagneticField3D.hh"         34 #include "HadrontherapyMagneticField3D.hh"
 30 #include "G4SystemOfUnits.hh"                      35 #include "G4SystemOfUnits.hh"
 31 #include "G4AutoLock.hh"                           36 #include "G4AutoLock.hh"
 32                                                    37 
 33 namespace{  G4Mutex MyHadrontherapyLock=G4MUTE     38 namespace{  G4Mutex MyHadrontherapyLock=G4MUTEX_INITIALIZER;  }
 34                                                    39 
 35 using namespace std;                           <<  40 HadrontherapyMagneticField3D::HadrontherapyMagneticField3D( const char* filename, double xOffset ) 
 36                                                << 
 37 HadrontherapyMagneticField3D::HadrontherapyMag << 
 38   :fXoffset(xOffset),invertX(false),invertY(fa     41   :fXoffset(xOffset),invertX(false),invertY(false),invertZ(false)
 39 {                                              <<  42 {    
 40    //The format file is: X Y Z Ex Ey Ez            43    //The format file is: X Y Z Ex Ey Ez
 41                                                    44 
 42   double lenUnit= meter;                       <<  45   double lenUnit= meter; 
 43   double fieldUnit= tesla;                     <<  46   double fieldUnit= tesla;  
 44   G4cout << "\n-------------------------------     47   G4cout << "\n-----------------------------------------------------------"
 45    << "\n      Magnetic field"                     48    << "\n      Magnetic field"
 46    << "\n-------------------------------------     49    << "\n-----------------------------------------------------------";
 47                                                    50 
 48                                                    51 
 49   G4cout << "\n ---> " "Reading the field grid <<  52   G4cout << "\n ---> " "Reading the field grid from " << filename << " ... " << endl; 
 50   G4AutoLock lock(&MyHadrontherapyLock);           53   G4AutoLock lock(&MyHadrontherapyLock);
 51                                                    54 
 52   ifstream file( filename ); // Open the file      55   ifstream file( filename ); // Open the file for reading.
 53                                                <<  56   
 54   // Ignore first blank line                       57   // Ignore first blank line
 55   char buffer[256];                                58   char buffer[256];
 56   file.getline(buffer,256);                        59   file.getline(buffer,256);
 57                                                <<  60   
 58   // Read table dimensions                     <<  61   // Read table dimensions 
 59   file >> nx >> ny >> nz; // Note dodgy order      62   file >> nx >> ny >> nz; // Note dodgy order
 60                                                    63 
 61   G4cout << "  [ Number of values x,y,z: "     <<  64   G4cout << "  [ Number of values x,y,z: " 
 62    << nx << " " << ny << " " << nz << " ] "        65    << nx << " " << ny << " " << nz << " ] "
 63    << G4endl;                                  <<  66    << endl;
 64                                                    67 
 65   // Set up storage space for table                68   // Set up storage space for table
 66   xField.resize( nx );                             69   xField.resize( nx );
 67   yField.resize( nx );                             70   yField.resize( nx );
 68   zField.resize( nx );                             71   zField.resize( nx );
 69   int ix, iy, iz;                                  72   int ix, iy, iz;
 70   for (ix=0; ix<nx; ix++) {                        73   for (ix=0; ix<nx; ix++) {
 71     xField[ix].resize(ny);                         74     xField[ix].resize(ny);
 72     yField[ix].resize(ny);                         75     yField[ix].resize(ny);
 73     zField[ix].resize(ny);                         76     zField[ix].resize(ny);
 74     for (iy=0; iy<ny; iy++) {                      77     for (iy=0; iy<ny; iy++) {
 75       xField[ix][iy].resize(nz);                   78       xField[ix][iy].resize(nz);
 76       yField[ix][iy].resize(nz);                   79       yField[ix][iy].resize(nz);
 77       zField[ix][iy].resize(nz);                   80       zField[ix][iy].resize(nz);
 78     }                                              81     }
 79   }                                                82   }
 80                                                    83 
 81   // Read in the data                              84   // Read in the data
 82   G4double xval=0.;                                85   G4double xval=0.;
 83   G4double yval=0.;                                86   G4double yval=0.;
 84   G4double zval=0.;                                87   G4double zval=0.;
 85   G4double bx=0.;                                  88   G4double bx=0.;
 86   G4double by=0.;                                  89   G4double by=0.;
 87   G4double bz=0.;                                  90   G4double bz=0.;
 88   for (ix=0; ix<nx; ix++) {                        91   for (ix=0; ix<nx; ix++) {
 89     for (iy=0; iy<ny; iy++) {                      92     for (iy=0; iy<ny; iy++) {
 90       for (iz=0; iz<nz; iz++) {                    93       for (iz=0; iz<nz; iz++) {
 91         file >> xval >> yval >> zval >> bx >>      94         file >> xval >> yval >> zval >> bx >> by >> bz ;
 92         if ( ix==0 && iy==0 && iz==0 ) {           95         if ( ix==0 && iy==0 && iz==0 ) {
 93           minx = xval * lenUnit;                   96           minx = xval * lenUnit;
 94           miny = yval * lenUnit;                   97           miny = yval * lenUnit;
 95           minz = zval * lenUnit;                   98           minz = zval * lenUnit;
 96         }                                          99         }
 97         xField[ix][iy][iz] = bx * fieldUnit;   << 100         xField[ix][iy][iz] = bx * fieldUnit; 
 98         yField[ix][iy][iz] = by * fieldUnit;      101         yField[ix][iy][iz] = by * fieldUnit;
 99         zField[ix][iy][iz] = bz * fieldUnit;      102         zField[ix][iy][iz] = bz * fieldUnit;
100       }                                           103       }
101     }                                             104     }
102   }                                               105   }
103   file.close();                                   106   file.close();
104                                                   107 
105   lock.unlock();                                  108   lock.unlock();
106                                                   109 
107   maxx = xval * lenUnit;                          110   maxx = xval * lenUnit;
108   maxy = yval * lenUnit;                          111   maxy = yval * lenUnit;
109   maxz = zval * lenUnit;                          112   maxz = zval * lenUnit;
110                                                   113 
111   G4cout << "\n ---> ... done reading " << G4e << 114   G4cout << "\n ---> ... done reading " << endl;
112                                                   115 
113   // G4cout << " Read values of field from fil << 116   // G4cout << " Read values of field from file " << filename << endl; 
114   G4cout << " ---> assumed the order:  x, y, z    117   G4cout << " ---> assumed the order:  x, y, z, Bx, By, Bz "
115    << "\n ---> Min values x,y,z: "             << 118    << "\n ---> Min values x,y,z: " 
116    << minx/cm << " " << miny/cm << " " << minz    119    << minx/cm << " " << miny/cm << " " << minz/cm << " cm "
117    << "\n ---> Max values x,y,z: "             << 120    << "\n ---> Max values x,y,z: " 
118    << maxx/cm << " " << maxy/cm << " " << maxz    121    << maxx/cm << " " << maxy/cm << " " << maxz/cm << " cm "
119    << "\n ---> The field will be offset by " < << 122    << "\n ---> The field will be offset by " << xOffset/cm << " cm " << endl;
120                                                   123 
121   // Should really check that the limits are n    124   // Should really check that the limits are not the wrong way around.
122   if (maxx < minx) {swap(maxx,minx); invertX = << 125   if (maxx < minx) {swap(maxx,minx); invertX = true;} 
123   if (maxy < miny) {swap(maxy,miny); invertY = << 126   if (maxy < miny) {swap(maxy,miny); invertY = true;} 
124   if (maxz < minz) {swap(maxz,minz); invertZ = << 127   if (maxz < minz) {swap(maxz,minz); invertZ = true;} 
125   G4cout << "\nAfter reordering if neccesary"  << 128   G4cout << "\nAfter reordering if neccesary"  
126    << "\n ---> Min values x,y,z: "             << 129    << "\n ---> Min values x,y,z: " 
127    << minx/cm << " " << miny/cm << " " << minz    130    << minx/cm << " " << miny/cm << " " << minz/cm << " cm "
128    << " \n ---> Max values x,y,z: "            << 131    << " \n ---> Max values x,y,z: " 
129    << maxx/cm << " " << maxy/cm << " " << maxz    132    << maxx/cm << " " << maxy/cm << " " << maxz/cm << " cm ";
130                                                   133 
131   dx = maxx - minx;                               134   dx = maxx - minx;
132   dy = maxy - miny;                               135   dy = maxy - miny;
133   dz = maxz - minz;                               136   dz = maxz - minz;
134   G4cout << "\n ---> Dif values x,y,z (range): << 137   G4cout << "\n ---> Dif values x,y,z (range): " 
135    << dx/cm << " " << dy/cm << " " << dz/cm <<    138    << dx/cm << " " << dy/cm << " " << dz/cm << " cm in z "
136    << "\n------------------------------------- << 139    << "\n-----------------------------------------------------------" << endl;
137 }                                                 140 }
138                                                   141 
139 void HadrontherapyMagneticField3D::GetFieldVal    142 void HadrontherapyMagneticField3D::GetFieldValue(const double point[4],
140               double *Bfield ) const              143               double *Bfield ) const
141 {                                                 144 {
142     double x = point[0]+ fXoffset;             << 145   double x = point[0]+ fXoffset;
143     double y = point[1];                       << 146   double y = point[1];
144     double z = point[2];                       << 147   double z = point[2];
145                                                << 148 
                                                   >> 149   // Check that the point is within the defined region 
                                                   >> 150   if ( x>=minx && x<maxx &&
                                                   >> 151        y>=miny && y<maxy && 
                                                   >> 152        z>=minz && z<maxz ) {
146     // Position of given point within region,     153     // Position of given point within region, normalized to the range
147     // [0,1]                                      154     // [0,1]
148     double xfraction = (x - minx) / dx;           155     double xfraction = (x - minx) / dx;
149     double yfraction = (y - miny) / dy;        << 156     double yfraction = (y - miny) / dy; 
150     double zfraction = (z - minz) / dz;           157     double zfraction = (z - minz) / dz;
151                                                   158 
152     if (invertX) { xfraction = 1 - xfraction;}    159     if (invertX) { xfraction = 1 - xfraction;}
153     if (invertY) { yfraction = 1 - yfraction;}    160     if (invertY) { yfraction = 1 - yfraction;}
154     if (invertZ) { zfraction = 1 - zfraction;}    161     if (invertZ) { zfraction = 1 - zfraction;}
155                                                   162 
156     // Need addresses of these to pass to modf    163     // Need addresses of these to pass to modf below.
157     // modf uses its second argument as an OUT    164     // modf uses its second argument as an OUTPUT argument.
158     double xdindex, ydindex, zdindex;             165     double xdindex, ydindex, zdindex;
159                                                << 166     
160     // Position of the point within the cuboid    167     // Position of the point within the cuboid defined by the
161     // nearest surrounding tabulated points       168     // nearest surrounding tabulated points
162     double xlocal = ( std::modf(xfraction*(nx-    169     double xlocal = ( std::modf(xfraction*(nx-1), &xdindex));
163     double ylocal = ( std::modf(yfraction*(ny-    170     double ylocal = ( std::modf(yfraction*(ny-1), &ydindex));
164     double zlocal = ( std::modf(zfraction*(nz-    171     double zlocal = ( std::modf(zfraction*(nz-1), &zdindex));
165                                                << 172     
166     // The indices of the nearest tabulated po    173     // The indices of the nearest tabulated point whose coordinates
167     // are all less than those of the given po    174     // are all less than those of the given point
168     int xindex = static_cast<int>(std::floor(x << 175     int xindex = static_cast<int>(xdindex);
169     int yindex = static_cast<int>(std::floor(y << 176     int yindex = static_cast<int>(ydindex);
170     int zindex = static_cast<int>(std::floor(z << 177     int zindex = static_cast<int>(zdindex);
171                                                << 178     
172       // Check that the point is within the de << 
173     if ((xindex < 0) || (xindex >= nx - 1) ||  << 
174         (yindex < 0) || (yindex >= ny - 1) ||  << 
175         (zindex < 0) || (zindex >= nz - 1))    << 
176     {                                          << 
177         Bfield[0] = 0.0;                       << 
178         Bfield[1] = 0.0;                       << 
179         Bfield[2] = 0.0;                       << 
180     }                                          << 
181     else                                       << 
182     {                                          << 
183                                                   179 
184 #ifdef DEBUG_INTERPOLATING_FIELD                  180 #ifdef DEBUG_INTERPOLATING_FIELD
185         G4cout << "Local x,y,z: " << xlocal << << 181     G4cout << "Local x,y,z: " << xlocal << " " << ylocal << " " << zlocal << endl;
186         G4cout << "Index x,y,z: " << xindex << << 182     G4cout << "Index x,y,z: " << xindex << " " << yindex << " " << zindex << endl;
187         double valx0z0, mulx0z0, valx1z0, mulx << 183     double valx0z0, mulx0z0, valx1z0, mulx1z0;
188         double valx0z1, mulx0z1, valx1z1, mulx << 184     double valx0z1, mulx0z1, valx1z1, mulx1z1;
189         valx0z0= table[xindex  ][0][zindex];   << 185     valx0z0= table[xindex  ][0][zindex];  mulx0z0=  (1-xlocal) * (1-zlocal);
190         valx1z0= table[xindex+1][0][zindex];   << 186     valx1z0= table[xindex+1][0][zindex];  mulx1z0=   xlocal    * (1-zlocal);
191         valx0z1= table[xindex  ][0][zindex+1]; << 187     valx0z1= table[xindex  ][0][zindex+1]; mulx0z1= (1-xlocal) * zlocal;
192         valx1z1= table[xindex+1][0][zindex+1]; << 188     valx1z1= table[xindex+1][0][zindex+1]; mulx1z1=  xlocal    * zlocal;
193 #endif                                            189 #endif
194                                                << 
195         // Full 3-dimensional version             190         // Full 3-dimensional version
196         Bfield[0] =                            << 191     Bfield[0] =
197           xField[xindex  ][yindex  ][zindex  ] << 192       xField[xindex  ][yindex  ][zindex  ] * (1-xlocal) * (1-ylocal) * (1-zlocal) +
198           xField[xindex  ][yindex  ][zindex+1] << 193       xField[xindex  ][yindex  ][zindex+1] * (1-xlocal) * (1-ylocal) *    zlocal  +
199           xField[xindex  ][yindex+1][zindex  ] << 194       xField[xindex  ][yindex+1][zindex  ] * (1-xlocal) *    ylocal  * (1-zlocal) +
200           xField[xindex  ][yindex+1][zindex+1] << 195       xField[xindex  ][yindex+1][zindex+1] * (1-xlocal) *    ylocal  *    zlocal  +
201           xField[xindex+1][yindex  ][zindex  ] << 196       xField[xindex+1][yindex  ][zindex  ] *    xlocal  * (1-ylocal) * (1-zlocal) +
202           xField[xindex+1][yindex  ][zindex+1] << 197       xField[xindex+1][yindex  ][zindex+1] *    xlocal  * (1-ylocal) *    zlocal  +
203           xField[xindex+1][yindex+1][zindex  ] << 198       xField[xindex+1][yindex+1][zindex  ] *    xlocal  *    ylocal  * (1-zlocal) +
204           xField[xindex+1][yindex+1][zindex+1] << 199       xField[xindex+1][yindex+1][zindex+1] *    xlocal  *    ylocal  *    zlocal ;
205                                                << 200 
206         Bfield[1] =                            << 201     Bfield[1] =
207           yField[xindex  ][yindex  ][zindex  ] << 202       yField[xindex  ][yindex  ][zindex  ] * (1-xlocal) * (1-ylocal) * (1-zlocal) +
208           yField[xindex  ][yindex  ][zindex+1] << 203       yField[xindex  ][yindex  ][zindex+1] * (1-xlocal) * (1-ylocal) *    zlocal  +
209           yField[xindex  ][yindex+1][zindex  ] << 204       yField[xindex  ][yindex+1][zindex  ] * (1-xlocal) *    ylocal  * (1-zlocal) +
210           yField[xindex  ][yindex+1][zindex+1] << 205       yField[xindex  ][yindex+1][zindex+1] * (1-xlocal) *    ylocal  *    zlocal  +
211           yField[xindex+1][yindex  ][zindex  ] << 206       yField[xindex+1][yindex  ][zindex  ] *    xlocal  * (1-ylocal) * (1-zlocal) +
212           yField[xindex+1][yindex  ][zindex+1] << 207       yField[xindex+1][yindex  ][zindex+1] *    xlocal  * (1-ylocal) *    zlocal  +
213           yField[xindex+1][yindex+1][zindex  ] << 208       yField[xindex+1][yindex+1][zindex  ] *    xlocal  *    ylocal  * (1-zlocal) +
214           yField[xindex+1][yindex+1][zindex+1] << 209       yField[xindex+1][yindex+1][zindex+1] *    xlocal  *    ylocal  *    zlocal ;
215                                                << 210 
216         Bfield[2] =                            << 211     Bfield[2] =
217           zField[xindex  ][yindex  ][zindex  ] << 212       zField[xindex  ][yindex  ][zindex  ] * (1-xlocal) * (1-ylocal) * (1-zlocal) +
218           zField[xindex  ][yindex  ][zindex+1] << 213       zField[xindex  ][yindex  ][zindex+1] * (1-xlocal) * (1-ylocal) *    zlocal  +
219           zField[xindex  ][yindex+1][zindex  ] << 214       zField[xindex  ][yindex+1][zindex  ] * (1-xlocal) *    ylocal  * (1-zlocal) +
220           zField[xindex  ][yindex+1][zindex+1] << 215       zField[xindex  ][yindex+1][zindex+1] * (1-xlocal) *    ylocal  *    zlocal  +
221           zField[xindex+1][yindex  ][zindex  ] << 216       zField[xindex+1][yindex  ][zindex  ] *    xlocal  * (1-ylocal) * (1-zlocal) +
222           zField[xindex+1][yindex  ][zindex+1] << 217       zField[xindex+1][yindex  ][zindex+1] *    xlocal  * (1-ylocal) *    zlocal  +
223           zField[xindex+1][yindex+1][zindex  ] << 218       zField[xindex+1][yindex+1][zindex  ] *    xlocal  *    ylocal  * (1-zlocal) +
224           zField[xindex+1][yindex+1][zindex+1] << 219       zField[xindex+1][yindex+1][zindex+1] *    xlocal  *    ylocal  *    zlocal ;
225     }                                          << 220   
226                                                << 221   } else {
                                                   >> 222     Bfield[0] = 0.0;
                                                   >> 223     Bfield[1] = 0.0;
                                                   >> 224     Bfield[2] = 0.0;
                                                   >> 225   }
227 //In order to obtain the output file with the     226 //In order to obtain the output file with the magnetic components read from a particle passing in the magnetic field
228 /*  std::ofstream MagneticField("MagneticField    227 /*  std::ofstream MagneticField("MagneticField.out", std::ios::app);
229      MagneticField<<   Bfield[0] << '\t' << "     228      MagneticField<<   Bfield[0] << '\t' << "   "
230       <<   Bfield[1] << '\t' << "    "            229       <<   Bfield[1] << '\t' << "    "
231       <<   Bfield[2] << '\t' << "   "             230       <<   Bfield[2] << '\t' << "   "
232       <<   point[0] << '\t' << "   "              231       <<   point[0] << '\t' << "   "
233       <<   point[1] << '\t' << "    "             232       <<   point[1] << '\t' << "    "
234       <<   point[2] << '\t' << "   "              233       <<   point[2] << '\t' << "   "
235       << std::endl;*/                          << 234       << G4endl;*/
236                                                << 235   
237 }                                                 236 }
                                                   >> 237 
238                                                   238