Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // Hadrontherapy advanced example for Geant4 27 // See more at: https://twiki.cern.ch/twiki/bi 28 29 #include "HadrontherapyDetectorConstruction.hh 30 #include "HadrontherapyLet.hh" 31 32 #include "HadrontherapyMatrix.hh" 33 #include "HadrontherapyInteractionParameters.h 34 #include "HadrontherapyPrimaryGeneratorAction. 35 #include "HadrontherapyMatrix.hh" 36 #include "G4AnalysisManager.hh" 37 #include "G4RunManager.hh" 38 #include "G4SystemOfUnits.hh" 39 #include <cmath> 40 41 HadrontherapyLet* HadrontherapyLet::instance = 42 G4bool HadrontherapyLet::doCalculation = false 43 44 HadrontherapyLet* HadrontherapyLet::GetInstanc 45 { 46 if (instance) delete instance; 47 instance = new HadrontherapyLet(pDet); 48 return instance; 49 } 50 51 HadrontherapyLet* HadrontherapyLet::GetInstanc 52 { 53 return instance; 54 } 55 56 HadrontherapyLet::HadrontherapyLet(Hadronthera 57 :filename("Let.out"),matrix(0) // Default outp 58 { 59 60 matrix = HadrontherapyMatrix::GetInstance( 61 62 if (!matrix) 63 G4Exception("HadrontherapyLet::Hadront 64 "Hadrontherapy0005", Fatal 65 "HadrontherapyMatrix not f 66 67 nVoxels = matrix -> GetNvoxel(); 68 69 numberOfVoxelAlongX = matrix -> GetNumberO 70 numberOfVoxelAlongY = matrix -> GetNumberO 71 numberOfVoxelAlongZ = matrix -> GetNumberO 72 73 G4RunManager *runManager = G4RunManager::G 74 pPGA = (HadrontherapyPrimaryGeneratorActio 75 // Pointer to the detector material 76 detectorMat = pDet -> GetDetectorLogicalVo 77 density = detectorMat -> GetDensity(); 78 // Instances for Total LET 79 totalLetD = new G4double[nVoxels]; 80 DtotalLetD = new G4double[nVoxels]; 81 totalLetT = new G4double[nVoxels]; 82 DtotalLetT = new G4double[nVoxels]; 83 84 } 85 86 HadrontherapyLet::~HadrontherapyLet() 87 { 88 Clear(); 89 delete [] totalLetD; 90 delete [] DtotalLetD; 91 delete [] totalLetT; 92 delete [] DtotalLetT; 93 } 94 95 // Fill energy spectrum for every voxel (local 96 void HadrontherapyLet::Initialize() 97 { 98 for(G4int v=0; v < nVoxels; v++) totalLetD 99 Clear(); 100 } 101 /** 102 * Clear all stored data 103 */ 104 void HadrontherapyLet::Clear() 105 { 106 for (size_t i=0; i < ionLetStore.size(); i 107 { 108 delete [] ionLetStore[i].letDN; // Let 109 delete [] ionLetStore[i].letDD; // Let 110 delete [] ionLetStore[i].letTN; // Let 111 delete [] ionLetStore[i].letTD; // Let 112 } 113 ionLetStore.clear(); 114 } 115 void HadrontherapyLet::FillEnergySpectrum(G4i 116 G4P 117 G4d 118 con 119 G4d 120 G4d 121 G4d 122 G4i 123 { 124 if (DE <= 0. || DX <=0. ) return; // calcu 125 if (!doCalculation) return; 126 127 // atomic number 128 G4int Z = particleDef -> GetAtomicNumber() 129 if (Z<1) return; // calculate only protons 130 131 G4int PDGencoding = particleDef -> GetPDGE 132 PDGencoding -= PDGencoding%10; // simple P 133 134 G4int voxel = matrix -> Index(i,j,k); 135 136 // ICRU stopping power calculation 137 G4EmCalculator emCal; 138 // use the mean kinetic energy of ions in 139 G4double Lsn = emCal.ComputeElectronicDEDX 140 141 142 // Total LET calculation... 143 totalLetD[voxel] += (DE + DEEletrons) * L 144 DtotalLetD[voxel] += DE + DEEletrons; 145 totalLetT[voxel] += DX * Lsn; 146 DtotalLetT[voxel] += DX; 147 148 // store primary ions and secondary ions 149 size_t l; 150 for (l=0; l < ionLetStore.size(); l++) 151 { 152 // judge species of the current partic 153 if (ionLetStore[l].PDGencoding == PDGe 154 if ( ((trackID ==1) && (ionLetStor 155 break; 156 } 157 158 if (l == ionLetStore.size()) // Just anoth 159 { 160 // mass number 161 G4int A = particleDef -> GetAtomicMass 162 163 // particle name 164 G4String fullName = particleDef -> Get 165 G4String name = fullName.substr (0, fu 166 167 ionLet ion = 168 { 169 (trackID == 1) ? true:false, // is 170 PDGencoding, 171 fullName, 172 name, 173 Z, 174 A, 175 new G4double[nVoxels], // Let Dose 176 new G4double[nVoxels], // Let Dos 177 new G4double[nVoxels], // Let Trac 178 new G4double[nVoxels], // Let Tra 179 }; 180 181 // Initialize let and other parameters 182 for(G4int v=0; v < nVoxels; v++) 183 { 184 ion.letDN[v] = ion.letDD[v] = ion. 185 } 186 187 188 ionLetStore.push_back(ion); 189 } 190 191 // calculate ions let and store them 192 ionLetStore[l].letDN[voxel] += (DE + DEEle 193 ionLetStore[l].letDD[voxel] += DE + DEElet 194 ionLetStore[l].letTN[voxel] += DX* Lsn; 195 ionLetStore[l].letTD[voxel] += DX; 196 197 } 198 199 200 201 202 void HadrontherapyLet::LetOutput() 203 { 204 for(G4int v=0; v < nVoxels; v++) 205 { 206 // compute total let 207 if (DtotalLetD[v]>0.) totalLetD[v] = t 208 if (DtotalLetT[v]>0.) totalLetT[v] = t 209 } 210 211 // Sort ions by A and then by Z ... 212 std::sort(ionLetStore.begin(), ionLetStore 213 214 215 // Compute Let Track and Let Dose for ions 216 217 for(G4int v=0; v < nVoxels; v++) 218 { 219 220 for (size_t ion=0; ion < ionLetStore.s 221 { 222 // compute ions let 223 if (ionLetStore[ion].letDD[v] >0.) 224 if (ionLetStore[ion].letTD[v] >0.) 225 } // end loop over ions 226 } 227 } // end loop over voxels 228 229 230 231 void HadrontherapyLet::StoreLetAscii() 232 { 233 #define width 15L 234 235 if(ionLetStore.size()) 236 { 237 ofs.open(filename, std::ios::out); 238 if (ofs.is_open()) 239 { 240 241 // Write the voxels index and tota 242 ofs << "i" << '\t' << "j" << '\t' 243 244 ofs << '\t' << "LDT"; 245 ofs << '\t' << "LTT"; 246 247 for (size_t l=0; l < ionLetStore.s 248 { 249 G4String a = (ionLetStore[l].i 250 ofs << '\t' << ionLetStore[l]. 251 G4String b = (ionLetStore[l].i 252 ofs << '\t' << ionLetStore[l]. 253 } 254 255 256 // Write data 257 258 G4AnalysisManager* LetFragmentTup 259 260 LetFragmentTuple->SetVerboseLevel( 261 LetFragmentTuple->SetFirstHistoId( 262 LetFragmentTuple->SetFirstNtupleId 263 LetFragmentTuple ->OpenFile("Let.c 264 265 266 LetFragmentTuple ->CreateNtuple("c 267 268 269 LetFragmentTuple ->CreateNtupleICo 270 LetFragmentTuple ->CreateNtupleICo 271 LetFragmentTuple ->CreateNtupleICo 272 LetFragmentTuple ->CreateNtupleDCo 273 LetFragmentTuple ->CreateNtupleDCo 274 LetFragmentTuple ->CreateNtupleICo 275 LetFragmentTuple ->CreateNtupleICo 276 LetFragmentTuple ->CreateNtupleDCo 277 LetFragmentTuple ->CreateNtupleDCo 278 LetFragmentTuple ->FinishNtuple(); 279 280 281 for(G4int i = 0; i < numberOfVoxel 282 for(G4int j = 0; j < numberOfV 283 for(G4int k = 0; k < numbe 284 { 285 LetFragmentTuple->Fill 286 LetFragmentTuple->Fill 287 LetFragmentTuple->Fill 288 289 G4int v = matrix -> In 290 291 // write total Lets an 292 ofs << G4endl; 293 ofs << i << '\t' << j 294 ofs << '\t' << totalLe 295 ofs << '\t' << totalLe 296 297 298 // write ions Lets 299 for (size_t l=0; l < i 300 { 301 302 // Write only not 303 if(ionLetStore[l]. 304 { 305 // write ions 306 ofs << '\t' << 307 ofs << '\t' << 308 } 309 } 310 311 LetFragmentTuple->Fill 312 LetFragmentTuple->Fill 313 314 315 for (size_t ll=0; ll < 316 { 317 318 319 LetFragmentTuple-> 320 LetFragmentTuple-> 321 322 323 LetFragmentTuple-> 324 LetFragmentTuple-> 325 LetFragmentTuple-> 326 } 327 } 328 ofs.close(); 329 330 LetFragmentTuple->Write(); 331 LetFragmentTuple->CloseFile(); 332 } 333 334 } 335 336 } 337 338