Geant4 Cross Reference |
1 ---------------------------------------------- 2 3 ========================================= 4 Geant4 - an Object-Oriented Toolkit for S 5 ========================================= 6 7 gammaray_telescope 8 ------------------ 9 F. Longo, R. Giannitrapan 10 June 2003 11 12 ---------------------------------------------- 13 Acknowledgments to GEANT4 people, in particula 14 A. Pfeiffer, M. G. Pia and G. Cosmo 15 ---------------------------------------------- 16 17 GammaRayTel is an example of application of Ge 18 environment. It simulates a typical telescope 19 the detector setup is composed by a tracker ma 20 subdivided in ladders and strips, a CsI calori 21 anticoincidence system. In this version, the t 22 sensitive but only the hits on the tracker str 23 information (energy deposition, position etc.) 24 ASCII file for subsequent analysis. 25 26 Relevant information from the simulation is pr 27 class and saved, through the G4AnalysisManager 28 Tuples. 29 30 a) Macros for the visualization of geometry 31 OpenGL, VRML and DAWN drivers 32 33 b) Implementation of messengers to change so 34 the detector geometry, the particle gener 35 manager (if present) runtime 36 37 c) Readout geometry mechanism to describe an 38 subdivisions of the planes of the tracker 39 affecting in a relevant way the simulatio 40 41 d) Histogramming facilities are presently pr 42 43 e) User interfaces via Xmotif or normal term 44 45 46 1. Setting up the environment variables 47 --------------------------------------- 48 49 - Setup for storing ASCII data 50 51 If you want to store the output data in an A 52 where x stays for the run number. You should 53 variable: 54 55 setenv G4STORE_DATA 1 56 57 - Setup for Visualization 58 59 IMPORTANT: be sure that your Geant4 installa 60 with the proper visualization drivers; for d 61 file geant4/source/visualization/README. 62 63 To use the visualization drivers set the fol 64 your local environment: 65 66 setenv G4VIS_USE_OPENGLX 1 # OpenGL visuali 67 setenv G4VIS_USE_DAWNFILE 1 # DAWN file 68 setenv G4VIS_USE_VRMLFILE 1 # VRML file 69 setenv G4VRMLFILE_VIEWER vrmlview # If inst 70 71 - Setup for Xmotif user interface 72 73 setenv G4UI_USE_XM 1 74 75 - Set up for analysis 76 77 To compile the GammaRayTel example with the 78 set the following variables 79 80 setenv G4ANALYSIS_USE 1 # Use the analysis t 81 82 2. Sample run 83 ------------- 84 85 To run a sample simulation with gamma tracks 86 the detector in its standard configuration an 87 visualization, execute the following command 88 directory: 89 90 $G4WORKDIR/bin/$G4SYSTEM/GammaRayTel 91 92 It is possible also to run three different co 93 macro1.mac, macro2.mac and macro3.mac for vis 94 and DAWN respectively) with the following com 95 96 $G4WORKDIR/bin/$G4SYSTEM/GammaRayTel macroX.m 97 98 where X can be 1, 2 or 3. Be sure to have the 99 the preceding section) and the proper visuali 100 your local G4 installation (see geant4/source 101 more information). 102 103 104 3. Detector description 105 ----------------------- 106 107 The detector is defined in GammaRayTelDetecto 108 It is composed of a Payload with three main d 109 Calorimeter (CAL) and an Anticoincidence syst 110 111 The standard configuration is made of a TKR o 112 4 * 4 Si single sided silicon detectors with 113 5 layers of CsI, each made of 2 views of 12 C 114 4 lateral panels and a top layer of plastic s 115 complete the configuration. 116 The Si detectors are composed of two silicon 117 aligned along the X axis in one plane and alo 118 119 The following baseline configuration is adopt 120 121 GEOMETRICAL PARAMETER VALUE 122 123 Converter Thickness 300 micron 124 Silicon Thickness 400 micron 125 Silicon Tile Size XY 9 cm 126 Silicon Pitch 200. micrometer 127 Views Distance 1. mm 128 CAL Bar Thickness 1.5 cm 129 ACD Thickness 1. cm 130 131 It is possible to modify in some way this con 132 commands defined in GammaRayTelDetectorMessen 133 This feature is available in the UI through t 134 "/payload/" (see the help command in the UI f 135 136 4. Physics processes 137 -------------------- 138 139 This example uses a modular physics list, wit 140 (see the web page http://cmsdoc.cern.ch/~hpw/ 141 physics lists), the Standard or the LowEnergy 142 143 5. Particle Generator 144 --------------------- 145 146 The GammaRayTelParticleGenerationAction and i 147 the incident flux of particles, from a specif 148 isotropic background. In the first case parti 149 surface which diameter is perpendicular to th 150 case the arrival directions are isotropic. 151 152 The user can define also between two spectral 153 monochromatic or with a power-law dependence. 154 generator parameters are accessible through t 155 UI help for more information). We are plannin 156 releases of this example, the General Particl 157 158 6. Hit 159 ------ 160 161 In this version the hits from the TKR the CAL 162 Only the hit from the TRK are saved. Each TKR 163 information 164 165 a) ID of the event (this is important for mu 166 b) Energy deposition of the particle in the 167 c) Number of the strip 168 d) Number of the plane 169 e) Type of the plane (1=X 0=Y) 170 f) Position of the hit (x, y, z) in the refe 171 172 The hit information are saved on an ASCII fil 173 N is the progressive ID number associated to 174 175 7. Analysis 176 ----------- 177 178 Relevant information from the simulation is pr 179 class and saved, through the G4AnalysisManager 180 Tuples. The output file is written in ROOT for 181 XML (or Hbook) by changing the appropriate #in 182 No external software is required (apart from t 183 must be installed and a FORTRAN compiler must 184 185 Keep in mind that the actual implementation o 186 is of a pedagogical nature, so we kept it as 187 188 The actual analysis produces some histograms 189 Both the histograms and the ntuple are saved 190 "gammaraytel.root". Please note that in a mul 191 the last run always override the root file. 192 193 8. Histogramming 194 ---------------- 195 196 The 1D histograms contain the energy depositi 197 the TKR and the hits distribution along the X 198 (note again that these histograms have been c 199 motivation than for physical one). 200 201 These histograms are filled and updated at ev 202 with each new run; the scale of the histogram 203 the detector geometry. 204 205 Through a messenger it is possible to set som 206 the UI subtree "/analysis/" (use the UI help 207 208 In this example we only show the use of very 209 simulation/analysis framework. 210 211 9. Digi 212 ------- 213 214 For the TKR also the digits corresponding to 215 A digi is generated when the hit energy depos 216 (in this example setted at 120 keV). 217 The TKR digi information are stored on the sa 218 219 a) ID of the event (this is important for mu 220 b) Number of the strip 221 c) Number of the plane 222 d) Type of the plane (1=X 0=Y) 223 224 10. Classes Overview 225 -------------------- 226 227 This is the overview of the classes defined i 228 229 GammaRayTelPrimaryGeneratorAction 230 User action for primaries generator 231 232 GammaRayTelPrimaryGeneratorMessenger 233 Messenger for interactive particle generat 234 parameters modification via the User Inter 235 236 GammaRayTelPhysicsList 237 Determination of modular physics classes 238 239 GammaRayTelDetectorConstruction 240 Geometry and material definitions for the 241 242 GammaRayTelDetectorMessenger 243 Messenger for interactive geometry paramet 244 modification via the User Interface 245 246 GammaRayTelAnalysis 247 Analysis manager class (experimental) 248 249 GammaRayTelAnalysisMessenger 250 Messenger for interactive analysis options 251 via the User Interface 252 253 GammaRayTelRunAction 254 User run action class 255 256 GammaRayTelEventAction 257 User event action class 258 259 GammaRayTelTrackerHit 260 Description of the hits on the tracker 261 262 GammaRayTelDigi 263 Description of the digi on the tracker 264 265 GammaRayTelDigitizer 266 Description of the digitizer for the track 267 268 GammaRayTelTrackerSD 269 Description of the TKR sensitive detector 270 271 GammaRayTelAnticoincidenceHit 272 Description of the hits on the anticoincid 273 274 GammaRayTelAnticoincidenceSD 275 Description of the ACD sensitive detector 276 277 GammaRayTelCalorimeterHit 278 Description of the hits on the calorimeter 279 280 GammaRayTelCalorimeterSD 281 Description of the CAL sensitive detector