Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/advanced/gammaray_telescope/README

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/advanced/gammaray_telescope/README (Version 11.3.0) and /examples/advanced/gammaray_telescope/README (Version 11.2)


  1 ----------------------------------------------      1 -------------------------------------------------------------------
  2                                                     2 
  3      =========================================      3      =========================================================
  4      Geant4 - an Object-Oriented Toolkit for S      4      Geant4 - an Object-Oriented Toolkit for Simulation in HEP
  5      =========================================      5      =========================================================
  6                                                     6 
  7                             gammaray_telescope      7                             gammaray_telescope
  8                             ------------------      8                             ------------------
  9                      F. Longo, R. Giannitrapan      9                      F. Longo, R. Giannitrapani & G. Santin
 10                      June 2003                     10                      June 2003
 11                                                    11 
 12 ----------------------------------------------     12 ---------------------------------------------------------------
 13 Acknowledgments to GEANT4 people, in particula     13 Acknowledgments to GEANT4 people, in particular to R. Nartallo,
 14 A. Pfeiffer, M. G. Pia and G. Cosmo                14 A. Pfeiffer, M. G. Pia and G. Cosmo
 15 ----------------------------------------------     15 ---------------------------------------------------------------
 16                                                    16 
 17 GammaRayTel is an example of application of Ge     17 GammaRayTel is an example of application of Geant4 in a space
 18 environment. It simulates a typical telescope      18 environment. It simulates a typical telescope for gamma ray analysis;
 19 the detector setup is composed by a tracker ma     19 the detector setup is composed by a tracker made with silicon planes,
 20 subdivided in ladders and strips, a CsI calori     20 subdivided in ladders and strips, a CsI calorimeter and an
 21 anticoincidence system. In this version, the t     21 anticoincidence system. In this version, the three detectors are made
 22 sensitive but only the hits on the tracker str     22 sensitive but only the hits on the tracker strips are registered and relevant
 23 information (energy deposition, position etc.)     23 information (energy deposition, position etc.) are dumped to an external
 24 ASCII file for subsequent analysis.                24 ASCII file for subsequent analysis.
 25                                                    25 
 26 Relevant information from the simulation is pr     26 Relevant information from the simulation is processed in the GammarayTelAnalysis
 27 class and saved, through the G4AnalysisManager     27 class and saved, through the G4AnalysisManager interface, to Histograms and
 28 Tuples.                                            28 Tuples.
 29                                                    29 
 30   a) Macros for the visualization of geometry      30   a) Macros for the visualization of geometry and tracks with
 31      OpenGL, VRML and DAWN drivers                 31      OpenGL, VRML and DAWN drivers
 32                                                    32 
 33   b) Implementation of messengers to change so     33   b) Implementation of messengers to change some parameters of
 34      the detector geometry, the particle gener     34      the detector geometry, the particle generator and the analysis
 35      manager (if present) runtime                  35      manager (if present) runtime
 36                                                    36 
 37   c) Readout geometry mechanism to describe an     37   c) Readout geometry mechanism to describe an high number of
 38      subdivisions of the planes of the tracker     38      subdivisions of the planes of the tracker (strips) without
 39      affecting in a relevant way the simulatio     39      affecting in a relevant way the simulation performances
 40                                                    40 
 41   d) Histogramming facilities are presently pr     41   d) Histogramming facilities are presently provided through the G4AnalysisManager class.
 42                                                    42 
 43   e) User interfaces via Xmotif or normal term     43   e) User interfaces via Xmotif or normal terminal provided
 44                                                    44 
 45                                                    45 
 46 1. Setting up the environment variables            46 1. Setting up the environment variables
 47 ---------------------------------------            47 ---------------------------------------
 48                                                    48 
 49  - Setup for storing ASCII data                    49  - Setup for storing ASCII data
 50                                                    50 
 51   If you want to store the output data in an A     51   If you want to store the output data in an ASCII file 'Tracks_x.dat'
 52   where x stays for the run number. You should     52   where x stays for the run number. You should specify the environment
 53   variable:                                        53   variable:
 54                                                    54 
 55   setenv G4STORE_DATA 1                            55   setenv G4STORE_DATA 1
 56                                                    56 
 57  - Setup for Visualization                         57  - Setup for Visualization
 58                                                    58 
 59   IMPORTANT: be sure that your Geant4 installa     59   IMPORTANT: be sure that your Geant4 installation has been done
 60   with the proper visualization drivers; for d     60   with the proper visualization drivers; for details please see the
 61   file geant4/source/visualization/README.         61   file geant4/source/visualization/README.
 62                                                    62 
 63   To use the visualization drivers set the fol     63   To use the visualization drivers set the following variables in
 64   your local environment:                          64   your local environment:
 65                                                    65 
 66   setenv G4VIS_USE_OPENGLX 1  # OpenGL visuali     66   setenv G4VIS_USE_OPENGLX 1  # OpenGL visualization
 67   setenv G4VIS_USE_DAWNFILE 1  # DAWN file         67   setenv G4VIS_USE_DAWNFILE 1  # DAWN file
 68   setenv G4VIS_USE_VRMLFILE 1  # VRML file         68   setenv G4VIS_USE_VRMLFILE 1  # VRML file
 69   setenv G4VRMLFILE_VIEWER vrmlview  # If inst     69   setenv G4VRMLFILE_VIEWER vrmlview  # If installed
 70                                                    70 
 71  - Setup for Xmotif user interface                 71  - Setup for Xmotif user interface
 72                                                    72 
 73    setenv G4UI_USE_XM  1                           73    setenv G4UI_USE_XM  1
 74                                                    74 
 75  - Set up for analysis                             75  - Set up for analysis
 76                                                    76 
 77   To compile the GammaRayTel example with the      77   To compile the GammaRayTel example with the analysis tools activated,
 78   set the following variables                      78   set the following variables
 79                                                    79 
 80   setenv G4ANALYSIS_USE 1 # Use the analysis t     80   setenv G4ANALYSIS_USE 1 # Use the analysis tools
 81                                                    81 
 82 2. Sample run                                      82 2. Sample run
 83 -------------                                      83 -------------
 84                                                    84 
 85  To run a sample simulation with gamma tracks      85  To run a sample simulation with gamma tracks interacting with
 86  the detector in its standard configuration an     86  the detector in its standard configuration and without any
 87  visualization, execute the following command      87  visualization, execute the following command in the example main
 88  directory:                                        88  directory:
 89                                                    89 
 90  $G4WORKDIR/bin/$G4SYSTEM/GammaRayTel              90  $G4WORKDIR/bin/$G4SYSTEM/GammaRayTel
 91                                                    91 
 92  It is possible also to run three different co     92  It is possible also to run three different configuration defined in
 93  macro1.mac, macro2.mac and macro3.mac for vis     93  macro1.mac, macro2.mac and macro3.mac for visualization (OpenGL, VRML
 94  and DAWN respectively) with the following com     94  and DAWN respectively) with the following command
 95                                                    95 
 96  $G4WORKDIR/bin/$G4SYSTEM/GammaRayTel macroX.m     96  $G4WORKDIR/bin/$G4SYSTEM/GammaRayTel macroX.mac
 97                                                    97 
 98  where X can be 1, 2 or 3. Be sure to have the     98  where X can be 1, 2 or 3. Be sure to have the right environment (see
 99  the preceding section) and the proper visuali     99  the preceding section) and the proper visualization driver enabled in
100  your local G4 installation (see geant4/source    100  your local G4 installation (see geant4/source/visualization/README for
101  more information).                               101  more information).
102                                                   102 
103                                                   103 
104 3. Detector description                           104 3. Detector description
105 -----------------------                           105 -----------------------
106                                                   106 
107  The detector is defined in GammaRayTelDetecto    107  The detector is defined in GammaRayTelDetectorConstruction.cc
108  It is composed of a Payload with three main d    108  It is composed of a Payload with three main detectors, a Tracker (TKR), a
109  Calorimeter (CAL) and an Anticoincidence syst    109  Calorimeter (CAL) and an Anticoincidence system (ACD).
110                                                   110 
111  The standard configuration is made of a TKR o    111  The standard configuration is made of a TKR of 15 Layers of 2 views made of
112  4 * 4 Si single sided silicon detectors with     112  4 * 4 Si single sided silicon detectors with Lead converter, and a CAL of
113  5 layers of CsI, each made of 2 views of 12 C    113  5 layers of CsI, each made of 2 views of 12 CsI bars orthogonally posed.
114  4 lateral panels and a top layer of plastic s    114  4 lateral panels and a top layer of plastic scintillator (ACL and ACT)
115  complete the configuration.                      115  complete the configuration.
116  The Si detectors are composed of two silicon     116  The Si detectors are composed of two silicon planes subdivided in strips
117  aligned along the X axis in one plane and alo    117  aligned along the X axis in one plane and along the Y axis for the other.
118                                                   118 
119  The following baseline configuration is adopt    119  The following baseline configuration is adopted:
120                                                   120 
121  GEOMETRICAL PARAMETER      VALUE                 121  GEOMETRICAL PARAMETER      VALUE
122                                                   122 
123  Converter Thickness        300 micron            123  Converter Thickness        300 micron
124  Silicon Thickness          400 micron            124  Silicon Thickness          400 micron
125  Silicon Tile Size XY       9 cm                  125  Silicon Tile Size XY       9 cm
126  Silicon Pitch              200. micrometer       126  Silicon Pitch              200. micrometer
127  Views Distance             1. mm                 127  Views Distance             1. mm
128  CAL Bar Thickness          1.5 cm                128  CAL Bar Thickness          1.5 cm
129  ACD Thickness              1. cm                 129  ACD Thickness              1. cm
130                                                   130 
131  It is possible to modify in some way this con    131  It is possible to modify in some way this configuration using the
132  commands defined in GammaRayTelDetectorMessen    132  commands defined in GammaRayTelDetectorMessenger.
133  This feature is available in the UI through t    133  This feature is available in the UI through the commands subtree
134  "/payload/" (see the help command in the UI f    134  "/payload/" (see the help command in the UI for more information).
135                                                   135 
136 4. Physics processes                              136 4. Physics processes
137 --------------------                              137 --------------------
138                                                   138 
139  This example uses a modular physics list, wit    139  This example uses a modular physics list, with a sample of Hadronic processes
140  (see the web page http://cmsdoc.cern.ch/~hpw/    140  (see the web page http://cmsdoc.cern.ch/~hpw/GHAD/HomePage/ for more adeguate
141  physics lists), the Standard or the LowEnergy    141  physics lists), the Standard or the LowEnergy Electromagnetic processes.
142                                                   142 
143 5. Particle Generator                             143 5. Particle Generator
144 ---------------------                             144 ---------------------
145                                                   145 
146  The GammaRayTelParticleGenerationAction and i    146  The GammaRayTelParticleGenerationAction and its Messenger let the user define
147  the incident flux of particles, from a specif    147  the incident flux of particles, from a specific direction or from an
148  isotropic background. In the first case parti    148  isotropic background. In the first case particles are generated on a spherical
149  surface which diameter is perpendicular to th    149  surface which diameter is perpendicular to the arrival direction. In the second
150  case the arrival directions are isotropic.       150  case the arrival directions are isotropic.
151                                                   151 
152  The user can define also between two spectral    152  The user can define also between two spectral options:
153  monochromatic or with a power-law dependence.    153  monochromatic or with a power-law dependence. The particle
154  generator parameters are accessible through t    154  generator parameters are accessible through the UI tree "/gun/" (use the
155  UI help for more information). We are plannin    155  UI help for more information). We are planning to include, in the next
156  releases of this example, the General Particl    156  releases of this example, the General Particle Source module of G4.
157                                                   157 
158 6. Hit                                            158 6. Hit
159 ------                                            159 ------
160                                                   160 
161  In this version the hits from the TKR the CAL    161  In this version the hits from the TKR the CAL and the ACD are generated.
162  Only the hit from the TRK are saved. Each TKR    162  Only the hit from the TRK are saved. Each TKR hit contains the following
163  information                                      163  information
164                                                   164 
165   a) ID of the event (this is important for mu    165   a) ID of the event (this is important for multiple events run)
166   b) Energy deposition of the particle in the     166   b) Energy deposition of the particle in the strip (keV)
167   c) Number of the strip                          167   c) Number of the strip
168   d) Number of the plane                          168   d) Number of the plane
169   e) Type of the plane (1=X  0=Y)                 169   e) Type of the plane (1=X  0=Y)
170   f) Position of the hit (x, y, z) in the refe    170   f) Position of the hit (x, y, z) in the reference frame of the payload
171                                                   171 
172  The hit information are saved on an ASCII fil    172  The hit information are saved on an ASCII file named Tracks_N.dat, where
173  N is the progressive ID number associated to     173  N is the progressive ID number associated to the run.
174                                                   174 
175 7. Analysis                                       175 7. Analysis
176 -----------                                       176 -----------
177                                                   177 
178 Relevant information from the simulation is pr    178 Relevant information from the simulation is processed in the GammarayTelAnalysis
179 class and saved, through the G4AnalysisManager    179 class and saved, through the G4AnalysisManager interface, to Histograms and
180 Tuples. The output file is written in ROOT for    180 Tuples. The output file is written in ROOT format, but one can easily switch to
181 XML (or Hbook) by changing the appropriate #in    181 XML (or Hbook) by changing the appropriate #include in GammarayTelAnalysis.hh
182 No external software is required (apart from t    182 No external software is required (apart from the hbook case, in which the CERNLIB
183 must be installed and a FORTRAN compiler must     183 must be installed and a FORTRAN compiler must be present)
184                                                   184 
185  Keep in mind that the actual implementation o    185  Keep in mind that the actual implementation of the analysis tools in GammaRayTel
186  is of a pedagogical nature, so we kept it as     186  is of a pedagogical nature, so we kept it as simple as possible.
187                                                   187 
188  The actual analysis produces some histograms     188  The actual analysis produces some histograms (see next section) and an ntuple.
189  Both the histograms and the ntuple are saved     189  Both the histograms and the ntuple are saved at the end of the run in the file
190  "gammaraytel.root". Please note that in a mul    190  "gammaraytel.root". Please note that in a multiple run session,
191 the last run always override the root file.       191 the last run always override the root file.
192                                                   192 
193 8. Histogramming                                  193 8. Histogramming
194 ----------------                                  194 ----------------
195                                                   195 
196  The 1D histograms contain the energy depositi    196  The 1D histograms contain the energy deposition in the last X plane of
197  the TKR and the hits distribution along the X    197  the TKR and the hits distribution along the X planes of the TKR
198  (note again that these histograms have been c    198  (note again that these histograms have been chosen more for pedagogical
199  motivation than for physical one).               199  motivation than for physical one).
200                                                   200 
201  These histograms are filled and updated at ev    201  These histograms are filled and updated at every event and are initialized
202  with each new run; the scale of the histogram    202  with each new run; the scale of the histograms is automatically derived from
203  the detector geometry.                           203  the detector geometry.
204                                                   204 
205  Through a messenger it is possible to set som    205  Through a messenger it is possible to set some options with
206  the UI subtree "/analysis/" (use the UI help     206  the UI subtree "/analysis/" (use the UI help for more info);
207                                                   207 
208  In this example we only show the use of very     208  In this example we only show the use of very basic feature of this new
209  simulation/analysis framework.                   209  simulation/analysis framework.
210                                                   210 
211 9. Digi                                           211 9. Digi
212 -------                                           212 -------
213                                                   213 
214  For the TKR also the digits corresponding to     214  For the TKR also the digits corresponding to the Hits are generated.
215  A digi is generated when the hit energy depos    215  A digi is generated when the hit energy deposit is greater than a threshold
216  (in this example setted at 120 keV).             216  (in this example setted at 120 keV).
217  The TKR digi information are stored on the sa    217  The TKR digi information are stored on the same file Tracks_N.dat and contain:
218                                                   218 
219   a) ID of the event (this is important for mu    219   a) ID of the event (this is important for multiple events run)
220   b) Number of the strip                          220   b) Number of the strip
221   c) Number of the plane                          221   c) Number of the plane
222   d) Type of the plane (1=X  0=Y)                 222   d) Type of the plane (1=X  0=Y)
223                                                   223 
224 10. Classes Overview                              224 10. Classes Overview
225 --------------------                              225 --------------------
226                                                   226 
227  This is the overview of the classes defined i    227  This is the overview of the classes defined in this example
228                                                   228 
229   GammaRayTelPrimaryGeneratorAction               229   GammaRayTelPrimaryGeneratorAction
230     User action for primaries generator           230     User action for primaries generator
231                                                   231 
232   GammaRayTelPrimaryGeneratorMessenger            232   GammaRayTelPrimaryGeneratorMessenger
233     Messenger for interactive particle generat    233     Messenger for interactive particle generator
234     parameters modification via the User Inter    234     parameters modification via the User Interface
235                                                   235 
236   GammaRayTelPhysicsList                          236   GammaRayTelPhysicsList
237     Determination of modular physics classes      237     Determination of modular physics classes
238                                                   238 
239   GammaRayTelDetectorConstruction                 239   GammaRayTelDetectorConstruction
240     Geometry and material definitions for the     240     Geometry and material definitions for the detector
241                                                   241 
242   GammaRayTelDetectorMessenger                    242   GammaRayTelDetectorMessenger
243     Messenger for interactive geometry paramet    243     Messenger for interactive geometry parameters
244     modification via the User Interface           244     modification via the User Interface
245                                                   245 
246   GammaRayTelAnalysis                             246   GammaRayTelAnalysis
247     Analysis manager class (experimental)         247     Analysis manager class (experimental)
248                                                   248 
249   GammaRayTelAnalysisMessenger                    249   GammaRayTelAnalysisMessenger
250     Messenger for interactive analysis options    250     Messenger for interactive analysis options modification
251     via the User Interface                        251     via the User Interface
252                                                   252 
253   GammaRayTelRunAction                            253   GammaRayTelRunAction
254     User run action class                         254     User run action class
255                                                   255 
256   GammaRayTelEventAction                          256   GammaRayTelEventAction
257     User event action class                       257     User event action class
258                                                   258 
259   GammaRayTelTrackerHit                           259   GammaRayTelTrackerHit
260     Description of the hits on the tracker        260     Description of the hits on the tracker
261                                                   261 
262   GammaRayTelDigi                                 262   GammaRayTelDigi
263     Description of the digi on the tracker        263     Description of the digi on the tracker
264                                                   264 
265   GammaRayTelDigitizer                            265   GammaRayTelDigitizer
266     Description of the digitizer for the track    266     Description of the digitizer for the tracker
267                                                   267 
268   GammaRayTelTrackerSD                            268   GammaRayTelTrackerSD
269     Description of the TKR sensitive detector     269     Description of the TKR sensitive detector
270                                                   270 
271   GammaRayTelAnticoincidenceHit                   271   GammaRayTelAnticoincidenceHit
272     Description of the hits on the anticoincid    272     Description of the hits on the anticoincidence
273                                                   273 
274   GammaRayTelAnticoincidenceSD                    274   GammaRayTelAnticoincidenceSD
275     Description of the ACD sensitive detector     275     Description of the ACD sensitive detector
276                                                   276 
277   GammaRayTelCalorimeterHit                       277   GammaRayTelCalorimeterHit
278     Description of the hits on the calorimeter    278     Description of the hits on the calorimeter
279                                                   279 
280   GammaRayTelCalorimeterSD                        280   GammaRayTelCalorimeterSD
281     Description of the CAL sensitive detector     281     Description of the CAL sensitive detector