Geant4 Cross Reference |
1 ========================================= 2 Geant4 - exp_microdosimetry example 3 ========================================= 4 5 README 6 --------------------- 7 8 9 The exp_microdosimetry example, originally nam 10 11 ---------------------------------------------- 12 13 Contact: susanna@uow.edu.au 14 francesco.romano@ct.infn.it 15 geant4-advanced-examples@cern.ch 16 17 ---------------------------------------------- 18 19 List of external collaborators: 20 J. Magini and G. Parisi - University of Surrey 21 J. Davis and D. Bolst - University of Wollongo 22 G. Milluzzo- INFN-Sezione di Catania, Catania, 23 24 ---------------------------------------------- 25 ----> Introduction. 26 27 The exp_microdosimetry example models differen 28 choose between the models of a simplified diam 29 30 1) A semplified diamond microdosimeter is base 31 for radioprotection applications in space envi 32 Vol. 59, pp. 3110-3116, 2012. 33 34 2) The microdiamond detector is based on the d 35 36 3-4) Both silicon microdosimeters are based on 37 38 5) The diamond telescope is based on the detec 39 6) A sempliefied version of a Silicon Carbide 40 41 The type of detectors, its shape, and its posi 42 This macro is called in both the vis.mac and r 43 - a macro command to choose the type of detect 44 - two macro commands to customise the width an 45 - two equivalent macro commands (/geometrySetu 46 - a macro command to choose whether to place t 47 - a macro command for use with the water phant 48 The above only take effect only if the macro c 49 50 An isotropic field of Galactic Cosmic Rays (GC 51 The energy deposition is calculated in the sen 52 53 In particular in this example it is shown how 54 - model a realistic isotropic field of GCRs by 55 - model a realistic detector in Geant4 56 - customise the detector's geometry and its po 57 - retrieve the information of secondary partic 58 - define the physics by means of a Geant4 Modu 59 - characterise the response of a realistic det 60 - save results in an analysis ROOT or plaintex 61 62 The example can be executed in multithreading 63 64 ---------------------------------------------- 65 ----> 1.Experimental set-up. 66 67 The diamond microdosimeter can be set either i 68 - if placing the detector in a vacuum, its cen 69 - if placing the detector in a water phantom, 70 71 All SV structures are active. 72 73 The primary radiation field is defined by mean 74 primary.mac 75 76 ---------------------------------------------- 77 ----> 2.SET-UP 78 79 A standard Geant4 example CMakeLists.txt is pr 80 81 Setup for analysis: 82 By default, the example has no analysis compon 83 84 To compile and use the application with the an 85 cmake -DWITH_ANALYSIS_USE=ON -DGeant4_DIR=/pat 86 87 When the analysis is enables, the default outp 88 The user can switch to a plaintext csv by unco 89 90 Two data analysis scripts are provided for use 91 - for ROOT output (exp_microdosimetry.root), p 92 - for csv output (exp_microdosimetry_*.csv), 1 93 Both scripts plot the microdosimetric spectrum 94 95 ---------------------------------------------- 96 ----> 3.How to run the example. 97 98 - Batch mode: 99 ./exp_microdosimetry run.mac 100 101 - Interative mode: 102 ./exp_microdosimetry 103 vis.mac is the default macro, executed in i 104 105 ---------------------------------------------- 106 ----> 4. Primary radiation Field 107 108 The radiation field is defined with the Genera 109 Look at the macro primary.mac . 110 111 NOTE: To maximise efficiency the field has bee 112 113 This macro contains a proton field of Galactic 114 If this example is used for medical applicatio 115 116 ---------------------------------------------- 117 ----> 5. Simulation output 118 119 **** SEQUENTIAL MODE 120 The output is radioprotection.root, containing 121 - an ntuple with the A, Z, and energy of the 122 - an ntuple withe the energy spectrum (in Me 123 - an ntuple with the energy deposition per e 124 125 When outputting to plaintext csv a separate fi 126 radioprotection_nt_10?.csv 127 128 where ? is the number of the ntuple 129 130 131 **** MULTITHREAD mode 132 output files: 133 exp_microdosimetry.root_t0 134 .. 135 .. 136 exp_microdosimetry.root_t# 137 138 where # is the number of threads 139 140 When outputting to plaintext csv a separate fi 141 exp_microdosimetry_nt_10?_t#.csv 142 143 where ? is the number of the ntuple 144 145 146 when using ROOT type: source MergeFiles to mer 147 when using Python, the first script takes care 148 149 ---------------------------------------------- 150 ----> 6.Visualisation 151 152 a macro is provided ad example of visualisatio 153 154 For any problem or question please contact Sus 155 156 ---------------------------------------------- 157 ----> 7. Analysis 158 Two sets of macro: 159 - ProcessMicro.C for ROOT output 160 - 1_plot_distributions.py and 2_calculate_mean 161 162 Each macro performs analysis of the energy dep 163 -Bins the event by event energy deposition sto 164 -Calculates the quantities: mean lineal energy 165 -In addition to these quantities the macro als 166 -The Python macro also includes an RBE estimat 167 LET Spectra: Microdosimetric Analysis Using Bi 168 -The macro also generates the common "microdos 169 170 When using the two-stage detector (5), no anal 171 172 ---------------------------------------------- 173 -----> Future developments 174 175 1) Further macros will be included for placing 176 2) A new macro messenger will be included to a 177 3) A new script will be added to provide a dE-