Geant4 Cross Reference |
1 1 2 ========================================= 2 ========================================================= 3 Geant4 - Brachytherapy example 3 Geant4 - Brachytherapy example 4 ========================================= 4 ========================================================= 5 5 6 README 6 README 7 --------------------- 7 --------------------- 8 8 9 9 10 The brachytherapy example is currently maintai << 10 The brachytherapy example is currently maintained by Susanna Guatelli (1), with the support of 11 Luciano Pandola (2) << 11 Pablo Cirrone (2), Dean Cutajar (1) and Stuart P. George (3) 12 12 13 1. Centre For Medical Radiation Physics (CMRP) 13 1. Centre For Medical Radiation Physics (CMRP), University of Wollongong, NSW, Australia. 14 2. LNS, INFN, Catania, Italy. 14 2. LNS, INFN, Catania, Italy. 15 << 15 3. University of Sheffield, England. 16 ---------------------------------------------- 16 ------------------------------------------------------------------------ 17 17 18 Contact: susanna@uow.edu.au 18 Contact: susanna@uow.edu.au 19 deanc@uow.edu.au << 20 geant4-advanced-examples@cern.ch 19 geant4-advanced-examples@cern.ch 21 20 22 ---------------------------------------------- 21 ------------------------------------------------------------------------ 23 22 24 List of past co-authors: << 23 List of authors: 25 S. George, S. Agostinelli, F. Foppiano, S. Gar << 24 S. Agostinelli, F. Foppiano, S. Garelli, S. Guatelli, M. G. Pia, M. Tropeano 26 25 27 ---------------------------------------------- 26 ----------------------------------------------------------------- 28 ----> Introduction. 27 ----> Introduction. 29 28 30 Brachytherapy example simulates the energy de 29 Brachytherapy example simulates the energy deposit in a water phantom, produced by: 31 1) Iridium sources (Flexisource and TG186). << 30 1) Iridium source (endocavitary brachytherapy). 32 2) Iodine sources (Bebig Isoseed and Oncura 67 << 31 2) Iodium source (interstitial brachytherapy). 33 3) Leipzig Applicator with an iridium source ( << 32 3) Leipzig Applicator (superficial brachytherapy). 34 << 35 The Flexisource, an Ir-192 source manufactured << 36 The geometry of the Flexisource was adapted fr << 37 "A dosimetric study on the Ir-192 high dose ra << 38 << 39 The TG186 source is a generic Ir-192 source cr << 40 Details of the TG186 source may be obtained fr << 41 "A generic high-dose rate 192Ir brachytherapy << 42 << 43 In particular in this example it is shown how << 44 - model a radioactive source in terms of radi << 45 - model the radiation field with the General P << 46 1) Define the energy spectrum of photons ex << 47 2) Modelling the Radioactive decay << 48 - calculate the energy deposition in a phantom << 49 - define the physics by means of a Geant4 Modu << 50 - save results in an analysis ROOT file << 51 - calculate the dose rate distribution along t << 52 - compare the calculated dose rate distributio << 53 << 54 In the case of the example, the dose rate dist << 55 J. PĂ©rez-Calatayud, E. Casal, et al,"A dosime << 56 The dose rate distribution of the Oncura 6711 << 57 dosimetry of an I-125 brachytherapy seed", Med << 58 << 59 The example can be executed in multithreading << 60 << 61 ---------------------------------------------- 33 ------------------------------------------------------------------------ 62 ----> 1.Experimental set-up. 34 ----> 1.Experimental set-up. 63 35 64 The default source is a Ir-192 Flexisource set << 36 The default source is an Ir-131 source set in the center of the phantom. 65 The phantom is set in the World volume filled << 37 The phantom is a box with size 30 cm. The phantom is set in the World volume filled 66 << 38 with air. 67 The primary radiation field is defined by mean << 68 ---------------------------------------------- 39 ------------------------------------------------------------------------- 69 ----> 2.SET-UP 40 ----> 2.SET-UP 70 41 71 A standard Geant4 example CMakeLists.txt is pr << 42 -a standard Geant4 example GNUmakefile is provided >> 43 >> 44 setup with: >> 45 G4SYSTEM = linux-g++ 72 46 >> 47 The following environment variables need to be set: >> 48 >> 49 G4LEDATA: points to low energy database >> 50 >> 51 Setup for analysis: macro.C is provided to plot the results of the simulation, contained >> 52 in the brachytherapy.root file. If the user intends to use this macro, ROOT must be installed >> 53 (http://root.cern.ch/drupal/). 73 ---------------------------------------------- 54 ------------------------------------------------------------------------ 74 ----> 3.How to run the example. 55 ----> 3.How to run the example. 75 56 76 - Batch mode: 57 - Batch mode: 77 $G4WORKDIR/bin/Linux-g++/Brachy FlexiSourceM << 78 $G4WORKDIR/bin/Linux-g++/Brachy LeipzigSourc << 79 $G4WORKDIR/bin/Linux-g++/Brachy IridiumSourc 58 $G4WORKDIR/bin/Linux-g++/Brachy IridiumSourceMacro.mac 80 $G4WORKDIR/bin/Linux-g++/Brachy IodiumSource << 59 $G4WORKDIR/bin/Linux-g++/Brachy IodiumSourceMacro.mac 81 $G4WORKDIR/bin/Linux-g++/Brachy OncuraIodine << 60 $G4WORKDIR/bin/Linux-g++/Brachy LeipzigSourceMacro.mac 82 $G4WORKDIR/bin/Linux-g++/Brachy LeipzigSourc << 83 61 84 - Interative mode: 62 - Interative mode: 85 3) $G4WORKDIR/bin/Linux-g++/Brachy 63 3) $G4WORKDIR/bin/Linux-g++/Brachy 86 VisualisationMacro.mac is loaded automati << 64 VisualisationMacro.mac is loaded automatically. >> 65 WARNING: In this configuration the energy deposition is not >> 66 calculated. The user has to set-up the scoring mesh. >> 67 Look at the IridiumSourceMacro.mac as example. >> 68 >> 69 --> Possible different configurations for interactive mode: >> 70 >> 71 1)Ir source: >> 72 idle>/run/beamOn NumberOfEvents ...and then >> 73 idle>exit >> 74 >> 75 2)Leipzig Applicator: >> 76 idle>/source/switch Leipzig >> 77 idle>/run/beamOn NumberOfEvents ...and then >> 78 idle> exit >> 79 >> 80 3) Iodium source: >> 81 idle>/source/switch Iodium >> 82 idle>/primary/energy Iodium >> 83 idle>/run/beamOn NumberOfEvents ...and then >> 84 idle>exit 87 85 88 * How to change the absorber material of the p 86 * How to change the absorber material of the phantom: 89 idle>/phantom/selectMaterial materialName 87 idle>/phantom/selectMaterial materialName 90 88 91 ---------------------------------------------- << 92 ----> 4. Primary radiation Field << 93 << 94 The radiation field is defined with the Genera << 95 << 96 Two alternative options are offered: << 97 1) Define gamma as primary radiation field. Th << 98 This radiation field is defined in: << 99 iodine_source_primary.mac and iridium_source_p << 100 << 101 2) Model the radioactive Decay. The primary pa << 102 This option is modelled in iodine_decay.mac an << 103 << 104 The GPS macros are executed in VisualisationMa << 105 << 106 - The Flexisource is the default source of the << 107 - In VisualisationMacro.mac the source is the << 108 - In FlexiSourceMacro.mac the Flexi Ir source << 109 - In IodineSourceMacro.mac, the Bebig Isoseed << 110 Alternatively the radioactive decay of I can << 111 - In LeipzigSourceMacro.mac, A Leipzig applica << 112 - The TG186SourceMacro.mac models the referenc << 113 - OncuraIodineSourceMacro.mac models both the << 114 ---------------------------------------------- << 115 ----> 5. Physics List << 116 << 117 The electromagnetic Livermore Low Energy physi << 118 The cut is 0.05 mm. << 119 Fluorescence and Auger electron emission are i << 120 << 121 ---------------------------------------------- 89 ------------------------------------------------------------------------ 122 ----> 6. Scoring mesh << 90 ----> 4. Scoring mesh 123 << 124 The scoring mesh is used to calculate the ener << 125 integrated over the whole run. The scoring mes << 126 The default output format of the scoring is ch << 127 The scoring mesh is fixed with a size of 20.0 << 128 << 129 When running in interactive mode there is no s << 130 << 131 ---------------------------------------------- << 132 ----> 6. Analysis << 133 << 134 G4Analysis is used to create and fill histogra << 135 << 136 The installation of ROOT is required to plot t << 137 in primary.root and brachytherapy.root(http:// << 138 91 >> 92 The scoring mesh is used to calculate the energy deposition in the voxels of the phantom, >> 93 integrated over the whole run. The scoring mesh is defined in the input macro file (see IridiumSourceMacro.mac). >> 94 The user can change the default output format of the scoring in the class BrachyUserScoreWriter. >> 95 139 ---------------------------------------------- 96 ------------------------------------------------------------------------ 140 ----> 7. Simulation output << 97 ----> 5. Simulation output 141 98 142 The output is: 99 The output is: 143 << 144 - ASCII file EnergyDeposition.out, with xx (mm 100 - ASCII file EnergyDeposition.out, with xx (mm), yy(mm), zz(mm), and energy deposition (keV), in the phantom. 145 To limit the use of memory, the energy depos << 101 - brachytherapy.root, containing an ntuple with the 3D energy deposition in the phantom. The macro macro.C is provided as example to open brachytherapy.root in ROOT interactive session and to plot the results of the simulation. 146 << 102 147 By default: << 148 EnergyDeposition_Flexi.out contains the Edep << 149 EnergyDeposition_iodine.out contains the Ede << 150 EnergyDeposition_TG186.out contains the Edep << 151 EnergyDeposition_Leipzig.out contains the Ed << 152 EnergyDeposition_Oncura.out contains the Ede << 153 << 154 - brachytherapy.root, containing a 2D histogra << 155 to open brachytherapy.root in ROOT interacti << 156 << 157 - primary.root, with 1D histogram of the ener << 158 plot_primary.C is provided as example to ope << 159 << 160 ---------------------------------------------- << 161 ----> 8.Visualisation << 162 << 163 A macro is provided ad example of visualisatio << 164 << 165 ---------------------------------------------- 103 ------------------------------------------------------------------------------- 166 -----> 9. Comparison to reference data << 104 ----> 6.Visualisation 167 << 168 The ROOT macros macro.C and plot_primary.C are << 169 in the brachytherapy.root file. << 170 << 171 The ROOT macro TG43_relative_dose.C has brachy << 172 the brachytherapy source. The dose rate is nor << 173 The output file is geant4_dose.txt with two co << 174 distance from the centre (cm) dose rate distri << 175 << 176 The user can then compare the dose rate distri << 177 << 178 Directory "comparison": << 179 As an example, the dose rate distribution calc << 180 << 181 The compare.C is a ROOT macro which reads the << 182 << 183 The directory "comparison" contains: << 184 - the reference data, granero.txt << 185 - the data obtained in Geant4.10.3: geant4.txt << 186 - comparison.C - macro to read geant4.txt and << 187 105 188 -----> 10. Regression testing of Geant4 << 106 a macro is provided ad example of visualisation: VisualisationMacro.mac 189 - the macros to run are in test_macro << 190 - the results should be processed with analysi << 191 107 192 108