Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4SPSAngDistribution class implementation << 26 /////////////////////////////////////////////////////////////////////////////// >> 27 // >> 28 // MODULE: G4SPSAngDistribution.cc >> 29 // >> 30 // Version: 1.0 >> 31 // Date: 5/02/04 >> 32 // Author: Fan Lei >> 33 // Organisation: QinetiQ ltd. >> 34 // Customer: ESA/ESTEC >> 35 // >> 36 /////////////////////////////////////////////////////////////////////////////// >> 37 // >> 38 // >> 39 // CHANGE HISTORY >> 40 // -------------- >> 41 // >> 42 // >> 43 // Version 1.0, 05/02/2004, Fan Lei, Created. >> 44 // Based on the G4GeneralParticleSource class in Geant4 v6.0 >> 45 // >> 46 /////////////////////////////////////////////////////////////////////////////// 27 // 47 // 28 // Author: Fan Lei, QinetiQ ltd. - 05/02/2004 << 29 // Customer: ESA/ESTEC << 30 // Revisions: Andrea Dotti, SLAC << 31 // ------------------------------------------- << 32 48 33 #include "G4SPSAngDistribution.hh" 49 #include "G4SPSAngDistribution.hh" 34 50 35 #include "Randomize.hh" 51 #include "Randomize.hh" 36 #include "G4PhysicalConstants.hh" 52 #include "G4PhysicalConstants.hh" 37 53 38 G4SPSAngDistribution::G4SPSAngDistribution() << 54 G4SPSAngDistribution::G4SPSAngDistribution() >> 55 : Theta(0.), Phi(0.) 39 { 56 { 40 // Angular distribution Variables 57 // Angular distribution Variables 41 G4ThreeVector zero; 58 G4ThreeVector zero; 42 particle_momentum_direction = G4ParticleMome 59 particle_momentum_direction = G4ParticleMomentum(0,0,-1); 43 60 44 AngDistType = "planar"; 61 AngDistType = "planar"; 45 AngRef1 = CLHEP::HepXHat; 62 AngRef1 = CLHEP::HepXHat; 46 AngRef2 = CLHEP::HepYHat; 63 AngRef2 = CLHEP::HepYHat; 47 AngRef3 = CLHEP::HepZHat; 64 AngRef3 = CLHEP::HepZHat; 48 MinTheta = 0.; 65 MinTheta = 0.; 49 MaxTheta = pi; 66 MaxTheta = pi; 50 MinPhi = 0.; 67 MinPhi = 0.; 51 MaxPhi = twopi; 68 MaxPhi = twopi; 52 DR = 0.; 69 DR = 0.; 53 DX = 0.; 70 DX = 0.; 54 DY = 0.; 71 DY = 0.; 55 FocusPoint = G4ThreeVector(0., 0., 0.); 72 FocusPoint = G4ThreeVector(0., 0., 0.); 56 UserDistType = "NULL"; 73 UserDistType = "NULL"; 57 UserWRTSurface = true; 74 UserWRTSurface = true; 58 UserAngRef = false; 75 UserAngRef = false; 59 IPDFThetaExist = false; 76 IPDFThetaExist = false; 60 IPDFPhiExist = false; 77 IPDFPhiExist = false; 61 verbosityLevel = 0; << 78 verbosityLevel = 0 ; 62 << 63 G4MUTEXINIT(mutex); << 64 } 79 } 65 80 66 G4SPSAngDistribution::~G4SPSAngDistribution() 81 G4SPSAngDistribution::~G4SPSAngDistribution() 67 { << 82 {} 68 G4MUTEXDESTROY(mutex); << 69 } << 70 83 71 void G4SPSAngDistribution::SetAngDistType(cons << 84 // >> 85 void G4SPSAngDistribution::SetAngDistType(G4String atype) 72 { 86 { 73 G4AutoLock l(&mutex); << 74 if(atype != "iso" && atype != "cos" && atype 87 if(atype != "iso" && atype != "cos" && atype != "user" && atype != "planar" 75 && atype != "beam1d" && atype != "beam2d" 88 && atype != "beam1d" && atype != "beam2d" && atype != "focused") 76 { << 89 G4cout << "Error, distribution must be iso, cos, planar, beam1d, beam2d, focused or user" << G4endl; 77 G4cout << "Error, distribution must be iso << 78 << G4endl; << 79 } << 80 else 90 else 81 { << 82 AngDistType = atype; 91 AngDistType = atype; 83 } << 92 if (AngDistType == "cos") MaxTheta = pi/2. ; 84 if (AngDistType == "cos") { MaxTheta = pi/2 << 93 if (AngDistType == "user") { 85 if (AngDistType == "user") << 94 UDefThetaH = IPDFThetaH = ZeroPhysVector ; 86 { << 95 IPDFThetaExist = false ; 87 UDefThetaH = IPDFThetaH = ZeroPhysVector; << 96 UDefPhiH = IPDFPhiH = ZeroPhysVector ; 88 IPDFThetaExist = false; << 97 IPDFPhiExist = false ; 89 UDefPhiH = IPDFPhiH = ZeroPhysVector; << 90 IPDFPhiExist = false; << 91 } 98 } 92 } 99 } 93 100 94 void G4SPSAngDistribution::DefineAngRefAxes(co << 101 void G4SPSAngDistribution::DefineAngRefAxes(G4String refname, G4ThreeVector ref) 95 co << 96 { 102 { 97 G4AutoLock l(&mutex); << 103 if(refname == "angref1") 98 if (refname == "angref1") << 99 AngRef1 = ref.unit(); // x' 104 AngRef1 = ref.unit(); // x' 100 else if (refname == "angref2") << 105 else if(refname == "angref2") 101 AngRef2 = ref.unit(); // vector in x'y' pl 106 AngRef2 = ref.unit(); // vector in x'y' plane 102 107 103 // User defines x' (AngRef1) and a vector in 108 // User defines x' (AngRef1) and a vector in the x'y' 104 // plane (AngRef2). Then, AngRef1 x AngRef2 109 // plane (AngRef2). Then, AngRef1 x AngRef2 = AngRef3 105 // the z' vector. Then, AngRef3 x AngRef1 = 110 // the z' vector. Then, AngRef3 x AngRef1 = AngRef2 106 // which will now be y'. 111 // which will now be y'. 107 112 108 AngRef3 = AngRef1.cross(AngRef2); // z' 113 AngRef3 = AngRef1.cross(AngRef2); // z' 109 AngRef2 = AngRef3.cross(AngRef1); // y' 114 AngRef2 = AngRef3.cross(AngRef1); // y' 110 UserAngRef = true ; 115 UserAngRef = true ; 111 if(verbosityLevel == 2) 116 if(verbosityLevel == 2) 112 { << 117 { 113 G4cout << "Angular distribution rotation a << 118 G4cout << "Angular distribution rotation axes " << AngRef1 << " " << AngRef2 << " " << AngRef3 << G4endl; 114 << " " << AngRef2 << " " << AngRef3 << 119 } 115 } << 116 } 120 } 117 121 118 void G4SPSAngDistribution::SetMinTheta(G4doubl 122 void G4SPSAngDistribution::SetMinTheta(G4double mint) 119 { 123 { 120 G4AutoLock l(&mutex); << 121 MinTheta = mint; 124 MinTheta = mint; 122 } 125 } 123 126 124 void G4SPSAngDistribution::SetMinPhi(G4double 127 void G4SPSAngDistribution::SetMinPhi(G4double minp) 125 { 128 { 126 G4AutoLock l(&mutex); << 127 MinPhi = minp; 129 MinPhi = minp; 128 } 130 } 129 131 130 void G4SPSAngDistribution::SetMaxTheta(G4doubl 132 void G4SPSAngDistribution::SetMaxTheta(G4double maxt) 131 { 133 { 132 G4AutoLock l(&mutex); << 133 MaxTheta = maxt; 134 MaxTheta = maxt; 134 } 135 } 135 136 136 void G4SPSAngDistribution::SetMaxPhi(G4double 137 void G4SPSAngDistribution::SetMaxPhi(G4double maxp) 137 { 138 { 138 G4AutoLock l(&mutex); << 139 MaxPhi = maxp; 139 MaxPhi = maxp; 140 } 140 } 141 141 142 void G4SPSAngDistribution::SetBeamSigmaInAngR( 142 void G4SPSAngDistribution::SetBeamSigmaInAngR(G4double r) 143 { 143 { 144 G4AutoLock l(&mutex); << 145 DR = r; 144 DR = r; 146 } 145 } 147 146 148 void G4SPSAngDistribution::SetBeamSigmaInAngX( 147 void G4SPSAngDistribution::SetBeamSigmaInAngX(G4double r) 149 { 148 { 150 G4AutoLock l(&mutex); << 151 DX = r; 149 DX = r; 152 } 150 } 153 151 154 void G4SPSAngDistribution::SetBeamSigmaInAngY( 152 void G4SPSAngDistribution::SetBeamSigmaInAngY(G4double r) 155 { 153 { 156 G4AutoLock l(&mutex); << 157 DY = r; 154 DY = r; 158 } 155 } 159 156 160 void G4SPSAngDistribution:: << 157 void G4SPSAngDistribution::UserDefAngTheta(G4ThreeVector input) 161 SetParticleMomentumDirection(const G4ParticleM << 162 { 158 { 163 G4AutoLock l(&mutex); << 164 particle_momentum_direction = aMomentumDirec << 165 } << 166 << 167 void G4SPSAngDistribution::SetPosDistribution( << 168 { << 169 G4AutoLock l(&mutex); << 170 posDist = a; << 171 } << 172 << 173 void G4SPSAngDistribution::SetBiasRndm(G4SPSRa << 174 { << 175 G4AutoLock l(&mutex); << 176 angRndm = a; << 177 } << 178 << 179 void G4SPSAngDistribution::SetVerbosity(G4int << 180 { << 181 G4AutoLock l(&mutex); << 182 verbosityLevel = a; << 183 } << 184 << 185 void G4SPSAngDistribution::UserDefAngTheta(con << 186 { << 187 G4AutoLock l(&mutex); << 188 if(UserDistType == "NULL") UserDistType = "t 159 if(UserDistType == "NULL") UserDistType = "theta"; 189 if(UserDistType == "phi") UserDistType = "bo 160 if(UserDistType == "phi") UserDistType = "both"; 190 G4double thi, val; 161 G4double thi, val; 191 thi = input.x(); 162 thi = input.x(); 192 val = input.y(); 163 val = input.y(); 193 if(verbosityLevel >= 1) G4cout << "In UserDe << 164 if(verbosityLevel >= 1) >> 165 G4cout << "In UserDefAngTheta" << G4endl; 194 UDefThetaH.InsertValues(thi, val); 166 UDefThetaH.InsertValues(thi, val); 195 } 167 } 196 168 197 G4String G4SPSAngDistribution::GetDistType() << 169 void G4SPSAngDistribution::UserDefAngPhi(G4ThreeVector input) 198 { << 199 G4AutoLock l(&mutex); << 200 return AngDistType; << 201 } << 202 << 203 G4double G4SPSAngDistribution::GetMinTheta() << 204 { 170 { 205 G4AutoLock l(&mutex); << 206 return MinTheta; << 207 } << 208 << 209 G4double G4SPSAngDistribution::GetMaxTheta() << 210 { << 211 G4AutoLock l(&mutex); << 212 return MaxTheta; << 213 } << 214 << 215 G4double G4SPSAngDistribution::GetMinPhi() << 216 { << 217 G4AutoLock l(&mutex); << 218 return MinPhi; << 219 } << 220 << 221 G4double G4SPSAngDistribution::GetMaxPhi() << 222 { << 223 G4AutoLock l(&mutex); << 224 return MaxPhi; << 225 } << 226 << 227 G4ThreeVector G4SPSAngDistribution::GetDirecti << 228 { << 229 G4AutoLock l(&mutex); << 230 return particle_momentum_direction; << 231 } << 232 << 233 void G4SPSAngDistribution::UserDefAngPhi(const << 234 { << 235 G4AutoLock l(&mutex); << 236 if(UserDistType == "NULL") UserDistType = "p 171 if(UserDistType == "NULL") UserDistType = "phi"; 237 if(UserDistType == "theta") UserDistType = " 172 if(UserDistType == "theta") UserDistType = "both"; 238 G4double phhi, val; 173 G4double phhi, val; 239 phhi = input.x(); 174 phhi = input.x(); 240 val = input.y(); 175 val = input.y(); 241 if(verbosityLevel >= 1) G4cout << "In UserDe << 176 if(verbosityLevel >= 1) >> 177 G4cout << "In UserDefAngPhi" << G4endl; 242 UDefPhiH.InsertValues(phhi, val); 178 UDefPhiH.InsertValues(phhi, val); 243 } 179 } 244 180 245 void G4SPSAngDistribution::SetFocusPoint(const << 181 void G4SPSAngDistribution::SetFocusPoint(G4ThreeVector input) 246 { 182 { 247 G4AutoLock l(&mutex); << 248 FocusPoint = input; 183 FocusPoint = input; 249 } 184 } 250 185 251 void G4SPSAngDistribution::SetUserWRTSurface(G 186 void G4SPSAngDistribution::SetUserWRTSurface(G4bool wrtSurf) 252 { 187 { 253 G4AutoLock l(&mutex); << 188 // This is only applied in user mode? 254 << 255 // if UserWRTSurface = true then the user wa 189 // if UserWRTSurface = true then the user wants momenta with respect 256 // to the surface normals. 190 // to the surface normals. 257 // When doing this theta has to be 0-90 only 191 // When doing this theta has to be 0-90 only otherwise there will be 258 // errors, which currently are flagged anywh 192 // errors, which currently are flagged anywhere. 259 // << 260 UserWRTSurface = wrtSurf; 193 UserWRTSurface = wrtSurf; 261 } 194 } 262 195 263 void G4SPSAngDistribution::SetUseUserAngAxis(G 196 void G4SPSAngDistribution::SetUseUserAngAxis(G4bool userang) 264 { 197 { 265 G4AutoLock l(&mutex); << 266 << 267 // if UserAngRef = true the angular distrib 198 // if UserAngRef = true the angular distribution is defined wrt 268 // the user defined coordinates << 199 // the user defined co-ordinates 269 // << 270 UserAngRef = userang; 200 UserAngRef = userang; 271 } 201 } 272 202 273 void G4SPSAngDistribution::GenerateBeamFlux(G4 << 203 void G4SPSAngDistribution::GenerateBeamFlux() 274 { 204 { 275 G4double theta, phi; 205 G4double theta, phi; 276 G4double px, py, pz; 206 G4double px, py, pz; 277 if (AngDistType == "beam1d") << 207 if (AngDistType == "beam1d") 278 { << 279 theta = G4RandGauss::shoot(0.0,DR); << 280 phi = twopi * G4UniformRand(); << 281 } << 282 else << 283 { << 284 px = G4RandGauss::shoot(0.0,DX); << 285 py = G4RandGauss::shoot(0.0,DY); << 286 theta = std::sqrt (px*px + py*py); << 287 if (theta != 0.) << 288 { 208 { 289 phi = std::acos(px/theta); << 209 theta = G4RandGauss::shoot(0.0,DR); 290 if ( py < 0.) phi = -phi; << 210 phi = twopi * G4UniformRand(); 291 } 211 } 292 else << 212 else 293 { << 213 { 294 phi = 0.0; << 214 px = G4RandGauss::shoot(0.0,DX); >> 215 py = G4RandGauss::shoot(0.0,DY); >> 216 theta = std::sqrt (px*px + py*py); >> 217 if (theta != 0.) { >> 218 phi = std::acos(px/theta); >> 219 if ( py < 0.) phi = -phi; >> 220 } >> 221 else >> 222 { >> 223 phi = 0.0; >> 224 } 295 } 225 } 296 } << 297 px = -std::sin(theta) * std::cos(phi); 226 px = -std::sin(theta) * std::cos(phi); 298 py = -std::sin(theta) * std::sin(phi); 227 py = -std::sin(theta) * std::sin(phi); 299 pz = -std::cos(theta); 228 pz = -std::cos(theta); 300 G4double finx, finy, finz; << 229 G4double finx, finy, finz ; 301 finx=px, finy=py, finz=pz; << 230 finx = px, finy =py, finz =pz; 302 if (UserAngRef) << 231 if (UserAngRef){ 303 { << 304 // Apply Angular Rotation Matrix 232 // Apply Angular Rotation Matrix 305 // x * AngRef1, y * AngRef2 and z * AngRef 233 // x * AngRef1, y * AngRef2 and z * AngRef3 306 finx = (px * AngRef1.x()) + (py * AngRef2. 234 finx = (px * AngRef1.x()) + (py * AngRef2.x()) + (pz * AngRef3.x()); 307 finy = (px * AngRef1.y()) + (py * AngRef2. 235 finy = (px * AngRef1.y()) + (py * AngRef2.y()) + (pz * AngRef3.y()); 308 finz = (px * AngRef1.z()) + (py * AngRef2. 236 finz = (px * AngRef1.z()) + (py * AngRef2.z()) + (pz * AngRef3.z()); 309 G4double ResMag = std::sqrt((finx*finx) + 237 G4double ResMag = std::sqrt((finx*finx) + (finy*finy) + (finz*finz)); 310 finx = finx/ResMag; 238 finx = finx/ResMag; 311 finy = finy/ResMag; 239 finy = finy/ResMag; 312 finz = finz/ResMag; 240 finz = finz/ResMag; 313 } 241 } 314 mom.setX(finx); << 242 particle_momentum_direction.setX(finx); 315 mom.setY(finy); << 243 particle_momentum_direction.setY(finy); 316 mom.setZ(finz); << 244 particle_momentum_direction.setZ(finz); 317 << 318 // particle_momentum_direction now holds uni << 319 245 >> 246 // particle_momentum_direction now holds unit momentum vector. 320 if(verbosityLevel >= 1) 247 if(verbosityLevel >= 1) 321 { << 248 G4cout << "Generating beam vector: " << particle_momentum_direction << G4endl; 322 G4cout << "Generating beam vector: " << mo << 323 } << 324 } 249 } 325 250 326 void G4SPSAngDistribution::GenerateFocusedFlux << 251 void G4SPSAngDistribution::GenerateFocusedFlux() 327 { 252 { 328 mom = (FocusPoint - posDist->GetParticlePos( << 253 particle_momentum_direction = (FocusPoint - posDist->particle_position).unit(); 329 << 254 // 330 // particle_momentum_direction now holds uni 255 // particle_momentum_direction now holds unit momentum vector. 331 << 332 if(verbosityLevel >= 1) 256 if(verbosityLevel >= 1) 333 { << 257 G4cout << "Generating focused vector: " << particle_momentum_direction << G4endl; 334 G4cout << "Generating focused vector: " << << 335 } << 336 } 258 } 337 259 338 void G4SPSAngDistribution::GenerateIsotropicFl << 260 void G4SPSAngDistribution::GenerateIsotropicFlux() 339 { 261 { 340 // generates isotropic flux. 262 // generates isotropic flux. 341 // No vectors are needed. 263 // No vectors are needed. 342 << 343 G4double rndm, rndm2; 264 G4double rndm, rndm2; 344 G4double px, py, pz; 265 G4double px, py, pz; 345 266 >> 267 // 346 G4double sintheta, sinphi,costheta,cosphi; 268 G4double sintheta, sinphi,costheta,cosphi; 347 rndm = angRndm->GenRandTheta(); 269 rndm = angRndm->GenRandTheta(); 348 costheta = std::cos(MinTheta) - rndm * (std: << 270 costheta = std::cos(MinTheta) - rndm * (std::cos(MinTheta) - std::cos(MaxTheta)); 349 - std: << 350 sintheta = std::sqrt(1. - costheta*costheta) 271 sintheta = std::sqrt(1. - costheta*costheta); 351 272 352 rndm2 = angRndm->GenRandPhi(); 273 rndm2 = angRndm->GenRandPhi(); 353 Phi = MinPhi + (MaxPhi - MinPhi) * rndm2; 274 Phi = MinPhi + (MaxPhi - MinPhi) * rndm2; 354 sinphi = std::sin(Phi); 275 sinphi = std::sin(Phi); 355 cosphi = std::cos(Phi); 276 cosphi = std::cos(Phi); 356 277 357 px = -sintheta * cosphi; 278 px = -sintheta * cosphi; 358 py = -sintheta * sinphi; 279 py = -sintheta * sinphi; 359 pz = -costheta; 280 pz = -costheta; 360 281 361 // For volume and point source use mother or << 282 // for volume and ponit source use mother or user defined co-ordinates 362 // for plane and surface source user surface << 283 // for plane and surface source user surface-normal or userdefined co-ordinates 363 // coordinates << 364 // 284 // 365 G4double finx, finy, finz; 285 G4double finx, finy, finz; 366 if (posDist->GetSourcePosType() == "Point" << 286 if (posDist->SourcePosType == "Point" || posDist->SourcePosType == "Volume") { 367 || posDist->GetSourcePosType() == "Volume") << 287 if (UserAngRef){ 368 { << 369 if (UserAngRef) << 370 { << 371 // Apply Rotation Matrix 288 // Apply Rotation Matrix 372 // x * AngRef1, y * AngRef2 and z * AngR 289 // x * AngRef1, y * AngRef2 and z * AngRef3 373 finx = (px * AngRef1.x()) + (py * AngRef 290 finx = (px * AngRef1.x()) + (py * AngRef2.x()) + (pz * AngRef3.x()); 374 finy = (px * AngRef1.y()) + (py * AngRef 291 finy = (px * AngRef1.y()) + (py * AngRef2.y()) + (pz * AngRef3.y()); 375 finz = (px * AngRef1.z()) + (py * AngRef 292 finz = (px * AngRef1.z()) + (py * AngRef2.z()) + (pz * AngRef3.z()); 376 } << 293 } else { 377 else << 378 { << 379 finx = px; 294 finx = px; 380 finy = py; 295 finy = py; 381 finz = pz; 296 finz = pz; 382 } 297 } 383 } << 298 } else { // for plane and surface source 384 else << 299 if (UserAngRef){ 385 { // for plane and surface source << 386 if (UserAngRef) << 387 { << 388 // Apply Rotation Matrix 300 // Apply Rotation Matrix 389 // x * AngRef1, y * AngRef2 and z * AngR 301 // x * AngRef1, y * AngRef2 and z * AngRef3 390 finx = (px * AngRef1.x()) + (py * AngRef 302 finx = (px * AngRef1.x()) + (py * AngRef2.x()) + (pz * AngRef3.x()); 391 finy = (px * AngRef1.y()) + (py * AngRef 303 finy = (px * AngRef1.y()) + (py * AngRef2.y()) + (pz * AngRef3.y()); 392 finz = (px * AngRef1.z()) + (py * AngRef 304 finz = (px * AngRef1.z()) + (py * AngRef2.z()) + (pz * AngRef3.z()); 393 } << 305 } else { 394 else << 306 finx = (px*posDist->SideRefVec1.x()) + (py*posDist->SideRefVec2.x()) + (pz*posDist->SideRefVec3.x()); 395 { << 307 finy = (px*posDist->SideRefVec1.y()) + (py*posDist->SideRefVec2.y()) + (pz*posDist->SideRefVec3.y()); 396 finx = (px*posDist->GetSideRefVec1().x() << 308 finz = (px*posDist->SideRefVec1.z()) + (py*posDist->SideRefVec2.z()) + (pz*posDist->SideRefVec3.z()); 397 + (py*posDist->GetSideRefVec2().x() << 398 + (pz*posDist->GetSideRefVec3().x() << 399 finy = (px*posDist->GetSideRefVec1().y() << 400 + (py*posDist->GetSideRefVec2().y() << 401 + (pz*posDist->GetSideRefVec3().y() << 402 finz = (px*posDist->GetSideRefVec1().z() << 403 + (py*posDist->GetSideRefVec2().z() << 404 + (pz*posDist->GetSideRefVec3().z() << 405 } 309 } 406 } 310 } 407 G4double ResMag = std::sqrt((finx*finx) + (f 311 G4double ResMag = std::sqrt((finx*finx) + (finy*finy) + (finz*finz)); 408 finx = finx/ResMag; 312 finx = finx/ResMag; 409 finy = finy/ResMag; 313 finy = finy/ResMag; 410 finz = finz/ResMag; 314 finz = finz/ResMag; 411 315 412 mom.setX(finx); << 316 particle_momentum_direction.setX(finx); 413 mom.setY(finy); << 317 particle_momentum_direction.setY(finy); 414 mom.setZ(finz); << 318 particle_momentum_direction.setZ(finz); 415 319 416 // particle_momentum_direction now holds uni 320 // particle_momentum_direction now holds unit momentum vector. 417 << 418 if(verbosityLevel >= 1) 321 if(verbosityLevel >= 1) 419 { << 322 G4cout << "Generating isotropic vector: " << particle_momentum_direction << G4endl; 420 G4cout << "Generating isotropic vector: " << 421 } << 422 } 323 } 423 324 424 void G4SPSAngDistribution::GenerateCosineLawFl << 325 void G4SPSAngDistribution::GenerateCosineLawFlux() 425 { 326 { 426 // Method to generate flux distributed with 327 // Method to generate flux distributed with a cosine law 427 << 428 G4double px, py, pz; 328 G4double px, py, pz; 429 G4double rndm, rndm2; 329 G4double rndm, rndm2; 430 << 330 // 431 G4double sintheta, sinphi,costheta,cosphi; 331 G4double sintheta, sinphi,costheta,cosphi; 432 rndm = angRndm->GenRandTheta(); 332 rndm = angRndm->GenRandTheta(); 433 sintheta = std::sqrt( rndm * (std::sin(MaxTh << 333 sintheta = std::sqrt( rndm * (std::sin(MaxTheta)*std::sin(MaxTheta) - std::sin(MinTheta)*std::sin(MinTheta) ) 434 - std::sin(MinTh << 334 +std::sin(MinTheta)*std::sin(MinTheta) ); 435 + std::sin(MinTheta)*std << 436 costheta = std::sqrt(1. -sintheta*sintheta); 335 costheta = std::sqrt(1. -sintheta*sintheta); 437 336 438 rndm2 = angRndm->GenRandPhi(); 337 rndm2 = angRndm->GenRandPhi(); 439 Phi = MinPhi + (MaxPhi - MinPhi) * rndm2; 338 Phi = MinPhi + (MaxPhi - MinPhi) * rndm2; 440 sinphi = std::sin(Phi); 339 sinphi = std::sin(Phi); 441 cosphi = std::cos(Phi); 340 cosphi = std::cos(Phi); 442 341 443 px = -sintheta * cosphi; 342 px = -sintheta * cosphi; 444 py = -sintheta * sinphi; 343 py = -sintheta * sinphi; 445 pz = -costheta; 344 pz = -costheta; 446 345 447 // for volume and point source use mother or << 346 // for volume and ponit source use mother or user defined co-ordinates 448 // for plane and surface source user surface << 347 // for plane and surface source user surface-normal or userdefined co-ordinates 449 // coordinates << 450 // 348 // 451 G4double finx, finy, finz; 349 G4double finx, finy, finz; 452 if (posDist->GetSourcePosType() == "Point" << 350 if (posDist->SourcePosType == "Point" || posDist->SourcePosType == "Volume") { 453 || posDist->GetSourcePosType() == "Volume") << 351 if (UserAngRef){ 454 { << 455 if (UserAngRef) << 456 { << 457 // Apply Rotation Matrix 352 // Apply Rotation Matrix 458 finx = (px * AngRef1.x()) + (py * AngRef 353 finx = (px * AngRef1.x()) + (py * AngRef2.x()) + (pz * AngRef3.x()); 459 finy = (px * AngRef1.y()) + (py * AngRef 354 finy = (px * AngRef1.y()) + (py * AngRef2.y()) + (pz * AngRef3.y()); 460 finz = (px * AngRef1.z()) + (py * AngRef 355 finz = (px * AngRef1.z()) + (py * AngRef2.z()) + (pz * AngRef3.z()); 461 } << 356 } else { 462 else << 463 { << 464 finx = px; 357 finx = px; 465 finy = py; 358 finy = py; 466 finz = pz; 359 finz = pz; 467 } 360 } 468 } << 361 } else { // for plane and surface source 469 else << 362 if (UserAngRef){ 470 { // for plane and surface source << 471 if (UserAngRef) << 472 { << 473 // Apply Rotation Matrix 363 // Apply Rotation Matrix 474 finx = (px * AngRef1.x()) + (py * AngRef 364 finx = (px * AngRef1.x()) + (py * AngRef2.x()) + (pz * AngRef3.x()); 475 finy = (px * AngRef1.y()) + (py * AngRef 365 finy = (px * AngRef1.y()) + (py * AngRef2.y()) + (pz * AngRef3.y()); 476 finz = (px * AngRef1.z()) + (py * AngRef 366 finz = (px * AngRef1.z()) + (py * AngRef2.z()) + (pz * AngRef3.z()); 477 } << 367 } else { 478 else << 368 finx = (px*posDist->SideRefVec1.x()) + (py*posDist->SideRefVec2.x()) + (pz*posDist->SideRefVec3.x()); 479 { << 369 finy = (px*posDist->SideRefVec1.y()) + (py*posDist->SideRefVec2.y()) + (pz*posDist->SideRefVec3.y()); 480 finx = (px*posDist->GetSideRefVec1().x() << 370 finz = (px*posDist->SideRefVec1.z()) + (py*posDist->SideRefVec2.z()) + (pz*posDist->SideRefVec3.z()); 481 + (py*posDist->GetSideRefVec2().x() << 482 + (pz*posDist->GetSideRefVec3().x() << 483 finy = (px*posDist->GetSideRefVec1().y() << 484 + (py*posDist->GetSideRefVec2().y() << 485 + (pz*posDist->GetSideRefVec3().y() << 486 finz = (px*posDist->GetSideRefVec1().z() << 487 + (py*posDist->GetSideRefVec2().z() << 488 + (pz*posDist->GetSideRefVec3().z() << 489 } 371 } 490 } 372 } 491 G4double ResMag = std::sqrt((finx*finx) + (f 373 G4double ResMag = std::sqrt((finx*finx) + (finy*finy) + (finz*finz)); 492 finx = finx/ResMag; 374 finx = finx/ResMag; 493 finy = finy/ResMag; 375 finy = finy/ResMag; 494 finz = finz/ResMag; 376 finz = finz/ResMag; 495 377 496 mom.setX(finx); << 378 particle_momentum_direction.setX(finx); 497 mom.setY(finy); << 379 particle_momentum_direction.setY(finy); 498 mom.setZ(finz); << 380 particle_momentum_direction.setZ(finz); 499 381 500 // particle_momentum_direction now contains 382 // particle_momentum_direction now contains unit momentum vector. 501 << 502 if(verbosityLevel >= 1) 383 if(verbosityLevel >= 1) 503 { << 384 { 504 G4cout << "Resultant cosine-law unit momen << 385 G4cout << "Resultant cosine-law unit momentum vector " << particle_momentum_direction << G4endl; 505 } << 386 } 506 } 387 } 507 388 508 void G4SPSAngDistribution::GeneratePlanarFlux( << 389 void G4SPSAngDistribution::GeneratePlanarFlux() 509 { 390 { 510 // particle_momentum_direction now contains 391 // particle_momentum_direction now contains unit momentum vector. 511 // nothing need be done here as the m-direct 392 // nothing need be done here as the m-directions have been set directly 512 // under this option 393 // under this option 513 << 514 if(verbosityLevel >= 1) 394 if(verbosityLevel >= 1) 515 { << 395 { 516 G4cout << "Resultant Planar wave momentum << 396 G4cout << "Resultant Planar wave momentum vector " << particle_momentum_direction << G4endl; 517 } << 397 } 518 } 398 } 519 399 520 void G4SPSAngDistribution::GenerateUserDefFlux << 400 void G4SPSAngDistribution::GenerateUserDefFlux() 521 { 401 { 522 G4double rndm, px, py, pz, pmag; 402 G4double rndm, px, py, pz, pmag; 523 403 524 if(UserDistType == "NULL") 404 if(UserDistType == "NULL") 525 { << 526 G4cout << "Error: UserDistType undefined" 405 G4cout << "Error: UserDistType undefined" << G4endl; 527 } << 406 else if(UserDistType == "theta") { 528 else if(UserDistType == "theta") << 529 { << 530 Theta = 10.; 407 Theta = 10.; 531 while(Theta > MaxTheta || Theta < MinTheta 408 while(Theta > MaxTheta || Theta < MinTheta) 532 { << 533 Theta = GenerateUserDefTheta(); 409 Theta = GenerateUserDefTheta(); 534 } << 535 Phi = 10.; 410 Phi = 10.; 536 while(Phi > MaxPhi || Phi < MinPhi) << 411 while(Phi > MaxPhi || Phi < MinPhi) { 537 { << 538 rndm = angRndm->GenRandPhi(); 412 rndm = angRndm->GenRandPhi(); 539 Phi = twopi * rndm; 413 Phi = twopi * rndm; 540 } 414 } 541 } 415 } 542 else if(UserDistType == "phi") << 416 else if(UserDistType == "phi") { 543 { << 544 Theta = 10.; 417 Theta = 10.; 545 while(Theta > MaxTheta || Theta < MinTheta 418 while(Theta > MaxTheta || Theta < MinTheta) 546 { << 419 { 547 rndm = angRndm->GenRandTheta(); << 420 rndm = angRndm->GenRandTheta(); 548 Theta = std::acos(1. - (2. * rndm)); << 421 Theta = std::acos(1. - (2. * rndm)); 549 } << 422 } 550 Phi = 10.; 423 Phi = 10.; 551 while(Phi > MaxPhi || Phi < MinPhi) 424 while(Phi > MaxPhi || Phi < MinPhi) 552 { << 553 Phi = GenerateUserDefPhi(); 425 Phi = GenerateUserDefPhi(); 554 } << 555 } 426 } 556 else if(UserDistType == "both") 427 else if(UserDistType == "both") 557 { << 558 Theta = 10.; << 559 while(Theta > MaxTheta || Theta < MinTheta << 560 { 428 { 561 Theta = GenerateUserDefTheta(); << 429 Theta = 10.; 562 } << 430 while(Theta > MaxTheta || Theta < MinTheta) 563 Phi = 10.; << 431 Theta = GenerateUserDefTheta(); 564 while(Phi > MaxPhi || Phi < MinPhi) << 432 Phi = 10.; 565 { << 433 while(Phi > MaxPhi || Phi < MinPhi) 566 Phi = GenerateUserDefPhi(); << 434 Phi = GenerateUserDefPhi(); 567 } 435 } 568 } << 569 px = -std::sin(Theta) * std::cos(Phi); 436 px = -std::sin(Theta) * std::cos(Phi); 570 py = -std::sin(Theta) * std::sin(Phi); 437 py = -std::sin(Theta) * std::sin(Phi); 571 pz = -std::cos(Theta); 438 pz = -std::cos(Theta); 572 439 573 pmag = std::sqrt((px*px) + (py*py) + (pz*pz) 440 pmag = std::sqrt((px*px) + (py*py) + (pz*pz)); 574 441 575 if(!UserWRTSurface) << 442 if(!UserWRTSurface) { 576 { << 577 G4double finx, finy, finz; 443 G4double finx, finy, finz; 578 if (UserAngRef) << 444 if (UserAngRef) { 579 { << 580 // Apply Rotation Matrix 445 // Apply Rotation Matrix 581 // x * AngRef1, y * AngRef2 and z * AngR 446 // x * AngRef1, y * AngRef2 and z * AngRef3 582 finx = (px * AngRef1.x()) + (py * AngRef 447 finx = (px * AngRef1.x()) + (py * AngRef2.x()) + (pz * AngRef3.x()); 583 finy = (px * AngRef1.y()) + (py * AngRef 448 finy = (px * AngRef1.y()) + (py * AngRef2.y()) + (pz * AngRef3.y()); 584 finz = (px * AngRef1.z()) + (py * AngRef 449 finz = (px * AngRef1.z()) + (py * AngRef2.z()) + (pz * AngRef3.z()); 585 } << 450 } else { // use mother co-ordinates 586 else // use mother coordinates << 587 { << 588 finx = px; 451 finx = px; 589 finy = py; 452 finy = py; 590 finz = pz; 453 finz = pz; 591 } 454 } 592 G4double ResMag = std::sqrt((finx*finx) + 455 G4double ResMag = std::sqrt((finx*finx) + (finy*finy) + (finz*finz)); 593 finx = finx/ResMag; 456 finx = finx/ResMag; 594 finy = finy/ResMag; 457 finy = finy/ResMag; 595 finz = finz/ResMag; 458 finz = finz/ResMag; 596 459 597 mom.setX(finx); << 460 particle_momentum_direction.setX(finx); 598 mom.setY(finy); << 461 particle_momentum_direction.setY(finy); 599 mom.setZ(finz); << 462 particle_momentum_direction.setZ(finz); 600 } 463 } 601 else // UserWRTSurface = true << 464 else { // UserWRTSurface = true 602 { << 603 G4double pxh = px/pmag; 465 G4double pxh = px/pmag; 604 G4double pyh = py/pmag; 466 G4double pyh = py/pmag; 605 G4double pzh = pz/pmag; 467 G4double pzh = pz/pmag; 606 if(verbosityLevel > 1) << 468 if(verbosityLevel > 1) { 607 { << 469 G4cout <<"SideRefVecs " <<posDist->SideRefVec1<<posDist->SideRefVec2<<posDist->SideRefVec3<<G4endl; 608 G4cout << "SideRefVecs " << posDist->Get << 470 G4cout <<"Raw Unit vector "<<pxh<<","<<pyh<<","<<pzh<<G4endl; 609 << posDist->GetSideRefVec2() << p << 471 } 610 << G4endl; << 472 G4double resultx = (pxh*posDist->SideRefVec1.x()) + (pyh*posDist->SideRefVec2.x()) + 611 G4cout << "Raw Unit vector " << pxh << 473 (pzh*posDist->SideRefVec3.x()); 612 << "," << pyh << "," << pzh << G4 << 613 } << 614 G4double resultx = (pxh*posDist->GetSideRe << 615 + (pyh*posDist->GetSideRe << 616 + (pzh*posDist->GetSideRe << 617 474 618 G4double resulty = (pxh*posDist->GetSideRe << 475 G4double resulty = (pxh*posDist->SideRefVec1.y()) + (pyh*posDist->SideRefVec2.y()) + 619 + (pyh*posDist->GetSideRe << 476 (pzh*posDist->SideRefVec3.y()); 620 + (pzh*posDist->GetSideRe << 621 477 622 G4double resultz = (pxh*posDist->GetSideRe << 478 G4double resultz = (pxh*posDist->SideRefVec1.z()) + (pyh*posDist->SideRefVec2.z()) + 623 + (pyh*posDist->GetSideRe << 479 (pzh*posDist->SideRefVec3.z()); 624 + (pzh*posDist->GetSideRe << 625 480 626 G4double ResMag = std::sqrt((resultx*resul << 481 G4double ResMag = std::sqrt((resultx*resultx) + (resulty*resulty) + (resultz*resultz)); 627 + (resulty*resul << 628 + (resultz*resul << 629 resultx = resultx/ResMag; 482 resultx = resultx/ResMag; 630 resulty = resulty/ResMag; 483 resulty = resulty/ResMag; 631 resultz = resultz/ResMag; 484 resultz = resultz/ResMag; 632 485 633 mom.setX(resultx); << 486 particle_momentum_direction.setX(resultx); 634 mom.setY(resulty); << 487 particle_momentum_direction.setY(resulty); 635 mom.setZ(resultz); << 488 particle_momentum_direction.setZ(resultz); 636 } 489 } 637 490 638 // particle_momentum_direction now contains 491 // particle_momentum_direction now contains unit momentum vector. 639 << 640 if(verbosityLevel > 0 ) 492 if(verbosityLevel > 0 ) 641 { << 493 { 642 G4cout << "Final User Defined momentum vec << 494 G4cout << "Final User Defined momentum vector " << particle_momentum_direction << G4endl; 643 << particle_momentum_direction << G << 495 } 644 } << 645 } 496 } 646 497 647 G4double G4SPSAngDistribution::GenerateUserDef 498 G4double G4SPSAngDistribution::GenerateUserDefTheta() 648 { 499 { 649 // Create cumulative histogram if not alread << 500 // Create cumulative histogram if not already done so. Then use RandFlat 650 // Then use RandFlat::shoot to generate the << 501 //::shoot to generate the output Theta value. 651 << 652 if(UserDistType == "NULL" || UserDistType == 502 if(UserDistType == "NULL" || UserDistType == "phi") 653 { << 654 // No user defined theta distribution << 655 G4cout << "Error ***********************" << 656 G4cout << "UserDistType = " << UserDistTyp << 657 return (0.); << 658 } << 659 << 660 // UserDistType = theta or both and so a the << 661 // is defined. This should be integrated if << 662 G4AutoLock l(&mutex); << 663 if(!IPDFThetaExist) << 664 { << 665 // IPDF has not been created, so create it << 666 // << 667 G4double bins[1024],vals[1024], sum; << 668 G4int ii; << 669 auto maxbin = G4int(UDefThetaH.GetVectorL << 670 bins[0] = UDefThetaH.GetLowEdgeEnergy(std: << 671 vals[0] = UDefThetaH(std::size_t(0)); << 672 sum = vals[0]; << 673 for(ii=1; ii<maxbin; ++ii) << 674 { 503 { 675 bins[ii] = UDefThetaH.GetLowEdgeEnergy(s << 504 // No user defined theta distribution 676 vals[ii] = UDefThetaH(std::size_t(ii)) + << 505 G4cout << "Error ***********************" << G4endl; 677 sum = sum + UDefThetaH(std::size_t(ii)); << 506 G4cout << "UserDistType = " << UserDistType << G4endl; >> 507 return (0.); 678 } 508 } 679 for(ii=0; ii<maxbin; ++ii) << 509 else 680 { 510 { 681 vals[ii] = vals[ii]/sum; << 511 // UserDistType = theta or both and so a theta distribution 682 IPDFThetaH.InsertValues(bins[ii], vals[i << 512 // is defined. This should be integrated if not already done. >> 513 if(IPDFThetaExist == false) >> 514 { >> 515 // IPDF has not been created, so create it >> 516 G4double bins[1024],vals[1024], sum; >> 517 G4int ii; >> 518 G4int maxbin = G4int(UDefThetaH.GetVectorLength()); >> 519 bins[0] = UDefThetaH.GetLowEdgeEnergy(size_t(0)); >> 520 vals[0] = UDefThetaH(size_t(0)); >> 521 sum = vals[0]; >> 522 for(ii=1;ii<maxbin;ii++) >> 523 { >> 524 bins[ii] = UDefThetaH.GetLowEdgeEnergy(size_t(ii)); >> 525 vals[ii] = UDefThetaH(size_t(ii)) + vals[ii-1]; >> 526 sum = sum + UDefThetaH(size_t(ii)); >> 527 } >> 528 for(ii=0;ii<maxbin;ii++) >> 529 { >> 530 vals[ii] = vals[ii]/sum; >> 531 IPDFThetaH.InsertValues(bins[ii], vals[ii]); >> 532 } >> 533 // Make IPDFThetaExist = true >> 534 IPDFThetaExist = true; >> 535 } >> 536 // IPDF has been create so carry on >> 537 G4double rndm = G4UniformRand(); >> 538 return(IPDFThetaH.GetEnergy(rndm)); 683 } 539 } 684 IPDFThetaExist = true; << 685 } << 686 l.unlock(); << 687 << 688 // IPDF has been created so carry on << 689 // << 690 G4double rndm = G4UniformRand(); << 691 return IPDFThetaH.GetEnergy(rndm); << 692 } 540 } 693 541 694 G4double G4SPSAngDistribution::GenerateUserDef 542 G4double G4SPSAngDistribution::GenerateUserDefPhi() 695 { 543 { 696 // Create cumulative histogram if not alread << 544 // Create cumulative histogram if not already done so. Then use RandFlat 697 // Then use RandFlat::shoot to generate the << 545 //::shoot to generate the output Theta value. 698 546 699 if(UserDistType == "NULL" || UserDistType == 547 if(UserDistType == "NULL" || UserDistType == "theta") 700 { << 701 // No user defined phi distribution << 702 G4cout << "Error ***********************" << 703 G4cout << "UserDistType = " << UserDistTyp << 704 return(0.); << 705 } << 706 << 707 // UserDistType = phi or both and so a phi d << 708 // is defined. This should be integrated if << 709 G4AutoLock l(&mutex); << 710 if(!IPDFPhiExist) << 711 { << 712 // IPDF has not been created, so create it << 713 // << 714 G4double bins[1024],vals[1024], sum; << 715 G4int ii; << 716 auto maxbin = G4int(UDefPhiH.GetVectorLen << 717 bins[0] = UDefPhiH.GetLowEdgeEnergy(std::s << 718 vals[0] = UDefPhiH(std::size_t(0)); << 719 sum = vals[0]; << 720 for(ii=1; ii<maxbin; ++ii) << 721 { 548 { 722 bins[ii] = UDefPhiH.GetLowEdgeEnergy(std << 549 // No user defined phi distribution 723 vals[ii] = UDefPhiH(std::size_t(ii)) + v << 550 G4cout << "Error ***********************" << G4endl; 724 sum = sum + UDefPhiH(std::size_t(ii)); << 551 G4cout << "UserDistType = " << UserDistType << G4endl; >> 552 return(0.); 725 } 553 } 726 for(ii=0; ii<maxbin; ++ii) << 554 else 727 { 555 { 728 vals[ii] = vals[ii]/sum; << 556 // UserDistType = phi or both and so a phi distribution 729 IPDFPhiH.InsertValues(bins[ii], vals[ii] << 557 // is defined. This should be integrated if not already done. >> 558 if(IPDFPhiExist == false) >> 559 { >> 560 // IPDF has not been created, so create it >> 561 G4double bins[1024],vals[1024], sum; >> 562 G4int ii; >> 563 G4int maxbin = G4int(UDefPhiH.GetVectorLength()); >> 564 bins[0] = UDefPhiH.GetLowEdgeEnergy(size_t(0)); >> 565 vals[0] = UDefPhiH(size_t(0)); >> 566 sum = vals[0]; >> 567 for(ii=1;ii<maxbin;ii++) >> 568 { >> 569 bins[ii] = UDefPhiH.GetLowEdgeEnergy(size_t(ii)); >> 570 vals[ii] = UDefPhiH(size_t(ii)) + vals[ii-1]; >> 571 sum = sum + UDefPhiH(size_t(ii)); >> 572 } >> 573 >> 574 for(ii=0;ii<maxbin;ii++) >> 575 { >> 576 vals[ii] = vals[ii]/sum; >> 577 IPDFPhiH.InsertValues(bins[ii], vals[ii]); >> 578 } >> 579 // Make IPDFPhiExist = true >> 580 IPDFPhiExist = true; >> 581 } >> 582 // IPDF has been create so carry on >> 583 G4double rndm = G4UniformRand(); >> 584 return(IPDFPhiH.GetEnergy(rndm)); 730 } 585 } 731 IPDFPhiExist = true; << 732 } << 733 l.unlock(); << 734 << 735 // IPDF has been create so carry on << 736 // << 737 G4double rndm = G4UniformRand(); << 738 return IPDFPhiH.GetEnergy(rndm); << 739 } 586 } 740 << 587 // 741 void G4SPSAngDistribution::ReSetHist(const G4S << 588 void G4SPSAngDistribution::ReSetHist(G4String atype) 742 { 589 { 743 G4AutoLock l(&mutex); << 590 if (atype == "theta") { 744 if (atype == "theta") << 745 { << 746 UDefThetaH = IPDFThetaH = ZeroPhysVector ; 591 UDefThetaH = IPDFThetaH = ZeroPhysVector ; 747 IPDFThetaExist = false ; << 592 IPDFThetaExist = false ;} 748 } << 593 else if (atype == "phi"){ 749 else if (atype == "phi") << 750 { << 751 UDefPhiH = IPDFPhiH = ZeroPhysVector ; 594 UDefPhiH = IPDFPhiH = ZeroPhysVector ; 752 IPDFPhiExist = false ; << 595 IPDFPhiExist = false ;} 753 } << 596 else { 754 else << 755 { << 756 G4cout << "Error, histtype not accepted " 597 G4cout << "Error, histtype not accepted " << G4endl; 757 } 598 } 758 } 599 } 759 600 >> 601 760 G4ParticleMomentum G4SPSAngDistribution::Gener 602 G4ParticleMomentum G4SPSAngDistribution::GenerateOne() 761 { 603 { 762 // Local copy for thread safety << 763 // << 764 G4ParticleMomentum localM = particle_momentu << 765 << 766 // Angular stuff 604 // Angular stuff 767 // << 768 if(AngDistType == "iso") 605 if(AngDistType == "iso") 769 GenerateIsotropicFlux(localM); << 606 GenerateIsotropicFlux(); 770 else if(AngDistType == "cos") 607 else if(AngDistType == "cos") 771 GenerateCosineLawFlux(localM); << 608 GenerateCosineLawFlux(); 772 else if(AngDistType == "planar") 609 else if(AngDistType == "planar") 773 GeneratePlanarFlux(localM); << 610 GeneratePlanarFlux(); 774 else if(AngDistType == "beam1d" || AngDistTy 611 else if(AngDistType == "beam1d" || AngDistType == "beam2d" ) 775 GenerateBeamFlux(localM); << 612 GenerateBeamFlux(); 776 else if(AngDistType == "user") 613 else if(AngDistType == "user") 777 GenerateUserDefFlux(localM); << 614 GenerateUserDefFlux(); 778 else if(AngDistType == "focused") 615 else if(AngDistType == "focused") 779 GenerateFocusedFlux(localM); << 616 GenerateFocusedFlux(); 780 else 617 else 781 G4cout << "Error: AngDistType has unusual 618 G4cout << "Error: AngDistType has unusual value" << G4endl; 782 return localM; << 619 return particle_momentum_direction; 783 } 620 } >> 621 >> 622 >> 623 >> 624 >> 625 >> 626 >> 627 >> 628 >> 629 784 630