Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4VScoringMesh << 27 // 26 // 28 // Class description: << 29 // 27 // 30 // This class represents a multi-functional de << 28 31 // command-based scorer for parallel world sco << 32 // parallel world mesh geometry << 33 // << 34 // Author: Makoto Asai << 35 // ------------------------------------------- << 36 #ifndef G4VScoringMesh_h 29 #ifndef G4VScoringMesh_h 37 #define G4VScoringMesh_h 1 30 #define G4VScoringMesh_h 1 38 31 39 #include "globals.hh" 32 #include "globals.hh" 40 #include "G4THitsMap.hh" 33 #include "G4THitsMap.hh" 41 #include "G4RotationMatrix.hh" 34 #include "G4RotationMatrix.hh" 42 #include "G4StatDouble.hh" 35 #include "G4StatDouble.hh" 43 36 44 #include <map> << 45 << 46 class G4VPhysicalVolume; 37 class G4VPhysicalVolume; 47 class G4LogicalVolume; 38 class G4LogicalVolume; 48 class G4MultiFunctionalDetector; 39 class G4MultiFunctionalDetector; 49 class G4VPrimitiveScorer; 40 class G4VPrimitiveScorer; 50 class G4VSDFilter; 41 class G4VSDFilter; 51 class G4VScoreColorMap; 42 class G4VScoreColorMap; 52 class G4ParallelWorldProcess; 43 class G4ParallelWorldProcess; 53 44 >> 45 #include <map> >> 46 >> 47 // class description: >> 48 // >> 49 // This class represents a multi-functional detector to be used by command-based scorer >> 50 // For parallel world scorer, this class creates a parallel world mesh geometry >> 51 // >> 52 54 class G4VScoringMesh 53 class G4VScoringMesh 55 { 54 { 56 public: << 55 public: 57 enum class MeshShape << 56 enum class MeshShape { box, cylinder, sphere, realWorldLogVol, undefined = -1}; 58 { << 57 using EventScore = G4THitsMap< G4double >; 59 box, << 58 using RunScore = G4THitsMap< G4StatDouble >; 60 cylinder, << 59 using MeshScoreMap = std::map< G4String, RunScore* >; 61 sphere, << 62 realWorldLogVol, << 63 probe, << 64 undefined = -1 << 65 }; << 66 using EventScore = G4THitsMap<G4double>; << 67 using RunScore = G4THitsMap<G4StatDouble << 68 using MeshScoreMap = std::map<G4String, RunS << 69 << 70 public: << 71 60 >> 61 public: 72 G4VScoringMesh(const G4String& wName); 62 G4VScoringMesh(const G4String& wName); 73 virtual ~G4VScoringMesh() = default; << 63 virtual ~G4VScoringMesh(); 74 64 75 virtual void Construct(G4VPhysicalVolume* fW << 65 public: // with description 76 virtual void WorkerConstruct(G4VPhysicalVolu << 66 // a pure virtual function to construct this mesh geometry >> 67 void Construct(G4VPhysicalVolume* fWorldPhys); 77 68 78 // list infomration of this mesh << 69 void WorkerConstruct(G4VPhysicalVolume* fWorldPhys); 79 virtual void List() const; << 70 >> 71 protected: >> 72 virtual void SetupGeometry(G4VPhysicalVolume * fWorldPhys) = 0; 80 73 >> 74 public: // with description >> 75 // list infomration of this mesh >> 76 virtual void List() const; >> 77 >> 78 public: // with description 81 // get the world name 79 // get the world name 82 // If this ScoringMesh is for parallel world << 80 // If this ScoringMesh is for parallel world, it returns the name of the parallel world 83 // parallel world If this ScoringMesh is for << 81 // If this ScoringMesh is for real world logical volume, it returns name of logical volume 84 // returns name of logical volume << 82 inline const G4String& GetWorldName() const 85 inline const G4String& GetWorldName() const << 83 { return fWorldName; } 86 // get whether this mesh is active or not 84 // get whether this mesh is active or not 87 inline G4bool IsActive() const { return fAct << 85 inline G4bool IsActive() const >> 86 { return fActive; } 88 // set an activity of this mesh 87 // set an activity of this mesh 89 inline void Activate(G4bool vl = true) { fAc << 88 inline void Activate(G4bool vl = true) >> 89 { fActive = vl; } 90 // get the shape of this mesh 90 // get the shape of this mesh 91 inline MeshShape GetShape() const { return f << 91 inline MeshShape GetShape() const >> 92 { return fShape; } 92 // accumulate hits in a registered primitive 93 // accumulate hits in a registered primitive scorer 93 void Accumulate(G4THitsMap<G4double>* map); << 94 void Accumulate(G4THitsMap<G4double> * map); 94 void Accumulate(G4THitsMap<G4StatDouble>* ma << 95 void Accumulate(G4THitsMap<G4StatDouble> * map); 95 // merge same kind of meshes 96 // merge same kind of meshes 96 void Merge(const G4VScoringMesh* scMesh); << 97 void Merge(const G4VScoringMesh * scMesh); 97 // dump information of primitive socrers reg 98 // dump information of primitive socrers registered in this mesh 98 void Dump(); 99 void Dump(); 99 // draw a projected quantity on a current vi 100 // draw a projected quantity on a current viewer 100 void DrawMesh(const G4String& psName, G4VSco << 101 void DrawMesh(const G4String& psName,G4VScoreColorMap* colorMap,G4int axflg=111); 101 G4int axflg = 111); << 102 // draw a column of a quantity on a current 102 // draw a column of a quantity on a current viewer 103 void DrawMesh(const G4String& psName, G4int << 103 void DrawMesh(const G4String& psName,G4int idxPlane,G4int iColumn,G4VScoreColorMap* colorMap); 104 G4VScoreColorMap* colorMap); << 105 // draw a projected quantity on a current vi 104 // draw a projected quantity on a current viewer 106 virtual void Draw(RunScore* map, G4VScoreCol << 105 virtual void Draw(RunScore * map, G4VScoreColorMap* colorMap, G4int axflg=111) = 0; 107 G4int axflg = 111) = 0; << 108 // draw a column of a quantity on a current 106 // draw a column of a quantity on a current viewer 109 virtual void DrawColumn(RunScore* map, G4VSc << 107 virtual void DrawColumn(RunScore * map, G4VScoreColorMap* colorMap, 110 G4int idxProj, G4int << 108 G4int idxProj, G4int idxColumn) = 0; 111 // reset registered primitive scorers 109 // reset registered primitive scorers 112 void ResetScore(); 110 void ResetScore(); 113 111 114 // Following set/get methods make sense only 112 // Following set/get methods make sense only for parallel world scoring mesh 115 // set size of this mesh 113 // set size of this mesh 116 void SetSize(G4double size[3]); 114 void SetSize(G4double size[3]); 117 // get size of this mesh 115 // get size of this mesh 118 G4ThreeVector GetSize() const; 116 G4ThreeVector GetSize() const; 119 // set starting and span angles (used only f << 120 void SetAngles(G4double, G4double); << 121 // get angles (used only for tube segment) << 122 inline G4double GetStartAngle() const { retu << 123 inline G4double GetAngleSpan() const { retur << 124 // set position of center of this mesh 117 // set position of center of this mesh 125 void SetCenterPosition(G4double centerPositi 118 void SetCenterPosition(G4double centerPosition[3]); 126 // get position of center of this mesh 119 // get position of center of this mesh 127 G4ThreeVector GetTranslation() const { retur << 120 G4ThreeVector GetTranslation() const {return fCenterPosition;} 128 // set a rotation angle around the x axis 121 // set a rotation angle around the x axis 129 void RotateX(G4double delta); 122 void RotateX(G4double delta); 130 // set a rotation angle around the y axis 123 // set a rotation angle around the y axis 131 void RotateY(G4double delta); 124 void RotateY(G4double delta); 132 // set a rotation angle around the z axis 125 // set a rotation angle around the z axis 133 void RotateZ(G4double delta); 126 void RotateZ(G4double delta); 134 // get a rotation matrix 127 // get a rotation matrix 135 inline G4RotationMatrix GetRotationMatrix() << 128 G4RotationMatrix GetRotationMatrix() const { 136 { << 129 if(fRotationMatrix) return *fRotationMatrix; 137 if(fRotationMatrix != nullptr) << 130 else return G4RotationMatrix::IDENTITY; 138 return *fRotationMatrix; << 139 return G4RotationMatrix::IDENTITY; << 140 } 131 } 141 132 142 // set number of segments of this mesh 133 // set number of segments of this mesh 143 void SetNumberOfSegments(G4int nSegment[3]); 134 void SetNumberOfSegments(G4int nSegment[3]); 144 // get number of segments of this mesh 135 // get number of segments of this mesh 145 void GetNumberOfSegments(G4int nSegment[3]); 136 void GetNumberOfSegments(G4int nSegment[3]); 146 137 147 // register a primitive scorer to the MFD & << 138 // register a primitive scorer to the MFD & set it to the current primitive scorer 148 // scorer << 139 void SetPrimitiveScorer(G4VPrimitiveScorer * ps); 149 void SetPrimitiveScorer(G4VPrimitiveScorer* << 150 // register a filter to a current primtive s 140 // register a filter to a current primtive scorer 151 void SetFilter(G4VSDFilter* filter); << 141 void SetFilter(G4VSDFilter * filter); 152 // set a primitive scorer to the current one 142 // set a primitive scorer to the current one by the name 153 void SetCurrentPrimitiveScorer(const G4Strin << 143 void SetCurrentPrimitiveScorer(const G4String & name); 154 // find registered primitive scorer by the n 144 // find registered primitive scorer by the name 155 G4bool FindPrimitiveScorer(const G4String& p << 145 G4bool FindPrimitiveScorer(const G4String & psname); 156 // get whether current primitive scorer is s 146 // get whether current primitive scorer is set or not 157 inline G4bool IsCurrentPrimitiveScorerNull() << 147 G4bool IsCurrentPrimitiveScorerNull() { 158 { << 148 if(fCurrentPS == nullptr) return true; 159 return fCurrentPS == nullptr; << 149 else return false; 160 } 150 } 161 // get unit of primitive scorer by the name 151 // get unit of primitive scorer by the name 162 G4String GetPSUnit(const G4String& psname); << 152 G4String GetPSUnit(const G4String & psname); 163 // get unit of current primitive scorer 153 // get unit of current primitive scorer 164 G4String GetCurrentPSUnit(); 154 G4String GetCurrentPSUnit(); 165 // set unit of current primitive scorer 155 // set unit of current primitive scorer 166 void SetCurrentPSUnit(const G4String& unit); 156 void SetCurrentPSUnit(const G4String& unit); 167 // get unit value of primitive scorer by the 157 // get unit value of primitive scorer by the name 168 G4double GetPSUnitValue(const G4String& psna << 158 G4double GetPSUnitValue(const G4String & psname); 169 // set PS name to be drawn 159 // set PS name to be drawn 170 inline void SetDrawPSName(const G4String& ps << 160 void SetDrawPSName(const G4String & psname) {fDrawPSName = psname;} 171 161 172 // get axis names of the hierarchical divisi 162 // get axis names of the hierarchical division in the divided order 173 void GetDivisionAxisNames(G4String divisionA 163 void GetDivisionAxisNames(G4String divisionAxisNames[3]); 174 164 175 // set current primitive scorer to NULL 165 // set current primitive scorer to NULL 176 void SetNullToCurrentPrimitiveScorer() { fCu << 166 void SetNullToCurrentPrimitiveScorer() {fCurrentPS = nullptr;} 177 // set verbose level 167 // set verbose level 178 inline void SetVerboseLevel(G4int vl) { verb << 168 inline void SetVerboseLevel(G4int vl) >> 169 { verboseLevel = vl; } 179 // get the primitive scorer map 170 // get the primitive scorer map 180 inline MeshScoreMap GetScoreMap() const { re << 171 inline MeshScoreMap GetScoreMap() const >> 172 { return fMap; } 181 // get whether this mesh setup has been read 173 // get whether this mesh setup has been ready 182 inline G4bool ReadyForQuantity() const { ret << 174 inline G4bool ReadyForQuantity() const >> 175 { return (sizeIsSet && nMeshIsSet); } 183 176 184 // protected: << 177 protected: 185 // get registered primitive socrer by the na 178 // get registered primitive socrer by the name 186 G4VPrimitiveScorer* GetPrimitiveScorer(const << 179 G4VPrimitiveScorer * GetPrimitiveScorer(const G4String & name); 187 << 188 inline void SetMeshElementLogical(G4LogicalV << 189 { << 190 fMeshElementLogical = val; << 191 } << 192 inline G4LogicalVolume* GetMeshElementLogica << 193 { << 194 return fMeshElementLogical; << 195 } << 196 180 197 inline void SetParallelWorldProcess(G4Parall << 181 protected: 198 { << 182 G4String fWorldName; 199 fParallelWorldProcess = proc; << 183 G4VPrimitiveScorer * fCurrentPS; 200 } << 184 G4bool fConstructed; 201 inline G4ParallelWorldProcess* GetParallelWo << 185 G4bool fActive; 202 { << 203 return fParallelWorldProcess; << 204 } << 205 inline void GeometryHasBeenDestroyed() << 206 { << 207 fGeometryHasBeenDestroyed = true; << 208 fMeshElementLogical = nullptr; << 209 } << 210 << 211 // Geometry hirarchy level (bottom = 0) to b << 212 // This is used only for real-world scorer << 213 inline void SetCopyNumberLevel(G4int val) { << 214 inline G4int GetCopyNumberLevel() const { re << 215 << 216 inline G4bool LayeredMassFlg() { return laye << 217 << 218 protected: << 219 << 220 // a pure virtual function to construct this << 221 virtual void SetupGeometry(G4VPhysicalVolume << 222 << 223 protected: << 224 << 225 G4String fWorldName; << 226 G4VPrimitiveScorer* fCurrentPS; << 227 G4bool fConstructed; << 228 G4bool fActive; << 229 MeshShape fShape; 186 MeshShape fShape; 230 187 231 G4double fSize[3]; 188 G4double fSize[3]; 232 G4double fAngle[2]; << 233 G4ThreeVector fCenterPosition; 189 G4ThreeVector fCenterPosition; 234 G4RotationMatrix* fRotationMatrix; << 190 G4RotationMatrix * fRotationMatrix; 235 G4int fNSegment[3]; 191 G4int fNSegment[3]; 236 192 237 MeshScoreMap fMap; 193 MeshScoreMap fMap; 238 G4MultiFunctionalDetector* fMFD; << 194 G4MultiFunctionalDetector * fMFD; 239 195 240 G4int verboseLevel; 196 G4int verboseLevel; 241 197 242 G4bool sizeIsSet; 198 G4bool sizeIsSet; 243 G4bool nMeshIsSet; 199 G4bool nMeshIsSet; 244 200 245 G4String fDrawUnit; 201 G4String fDrawUnit; 246 G4double fDrawUnitValue; 202 G4double fDrawUnitValue; 247 G4String fDrawPSName; 203 G4String fDrawPSName; 248 204 249 G4String fDivisionAxisNames[3]; 205 G4String fDivisionAxisNames[3]; 250 206 251 G4LogicalVolume* fMeshElementLogical; << 207 G4LogicalVolume * fMeshElementLogical; 252 208 >> 209 public: >> 210 inline void SetMeshElementLogical(G4LogicalVolume* val) >> 211 { fMeshElementLogical = val; } >> 212 inline G4LogicalVolume* GetMeshElementLogical() const >> 213 { return fMeshElementLogical; } >> 214 >> 215 protected: 253 G4ParallelWorldProcess* fParallelWorldProces 216 G4ParallelWorldProcess* fParallelWorldProcess; 254 G4bool fGeometryHasBeenDestroyed; 217 G4bool fGeometryHasBeenDestroyed; 255 << 218 public: 256 G4int copyNumberLevel; << 219 inline void SetParallelWorldProcess(G4ParallelWorldProcess* proc) >> 220 { fParallelWorldProcess = proc; } >> 221 inline G4ParallelWorldProcess* GetParallelWorldProcess() const >> 222 { return fParallelWorldProcess; } >> 223 inline void GeometryHasBeenDestroyed() >> 224 { >> 225 fGeometryHasBeenDestroyed = true; >> 226 fMeshElementLogical = nullptr; >> 227 } 257 228 258 // This flag may be set to true for Probe sc << 229 protected: 259 // There is no public set method for this bo << 230 G4int copyNumberLevel; 260 // to true through SetMaterial() method of P << 231 public: 261 G4bool layeredMassFlg; << 232 // Geometry hirarchy level (bottom = 0) to be used as the copy number >> 233 // This is used only for real-world scorer >> 234 inline void SetCopyNumberLevel(G4int val) >> 235 { copyNumberLevel = val; } >> 236 inline G4int GetCopyNumberLevel() const >> 237 { return copyNumberLevel; } 262 }; 238 }; 263 239 264 #endif 240 #endif >> 241 265 242