Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4VScoringMesh << 27 // 26 // 28 // Class description: << 27 // $Id$ 29 // 28 // 30 // This class represents a multi-functional de << 29 31 // command-based scorer for parallel world sco << 32 // parallel world mesh geometry << 33 // << 34 // Author: Makoto Asai << 35 // ------------------------------------------- << 36 #ifndef G4VScoringMesh_h 30 #ifndef G4VScoringMesh_h 37 #define G4VScoringMesh_h 1 31 #define G4VScoringMesh_h 1 38 32 39 #include "globals.hh" 33 #include "globals.hh" 40 #include "G4THitsMap.hh" 34 #include "G4THitsMap.hh" 41 #include "G4RotationMatrix.hh" 35 #include "G4RotationMatrix.hh" 42 #include "G4StatDouble.hh" 36 #include "G4StatDouble.hh" 43 37 44 #include <map> << 45 << 46 class G4VPhysicalVolume; 38 class G4VPhysicalVolume; 47 class G4LogicalVolume; 39 class G4LogicalVolume; 48 class G4MultiFunctionalDetector; 40 class G4MultiFunctionalDetector; 49 class G4VPrimitiveScorer; 41 class G4VPrimitiveScorer; 50 class G4VSDFilter; 42 class G4VSDFilter; 51 class G4VScoreColorMap; 43 class G4VScoreColorMap; 52 class G4ParallelWorldProcess; 44 class G4ParallelWorldProcess; 53 45 >> 46 #include <map> >> 47 >> 48 enum MeshShape { boxMesh, cylinderMesh, sphereMesh , undefinedMesh = -1}; >> 49 typedef G4THitsMap< G4double > EventScore; >> 50 typedef G4THitsMap< G4StatDouble > RunScore; >> 51 typedef std::map< G4String, RunScore* > MeshScoreMap; >> 52 // class description: >> 53 // >> 54 // This class represents a parallel world for interactive scoring purposes. >> 55 // >> 56 54 class G4VScoringMesh 57 class G4VScoringMesh 55 { 58 { 56 public: << 59 public: 57 enum class MeshShape << 60 G4VScoringMesh(const G4String& wName); 58 { << 61 virtual ~G4VScoringMesh(); 59 box, << 60 cylinder, << 61 sphere, << 62 realWorldLogVol, << 63 probe, << 64 undefined = -1 << 65 }; << 66 using EventScore = G4THitsMap<G4double>; << 67 using RunScore = G4THitsMap<G4StatDouble << 68 using MeshScoreMap = std::map<G4String, RunS << 69 62 70 public: << 63 public: // with description >> 64 // a pure virtual function to construct this mesh geometry >> 65 void Construct(G4VPhysicalVolume* fWorldPhys); 71 66 72 G4VScoringMesh(const G4String& wName); << 67 void WorkerConstruct(G4VPhysicalVolume* fWorldPhys); 73 virtual ~G4VScoringMesh() = default; << 74 68 75 virtual void Construct(G4VPhysicalVolume* fW << 69 protected: 76 virtual void WorkerConstruct(G4VPhysicalVolu << 70 virtual void SetupGeometry(G4VPhysicalVolume * fWorldPhys) = 0; 77 71 78 // list infomration of this mesh << 72 public: // with description >> 73 // list infomration of this mesh 79 virtual void List() const; 74 virtual void List() const; 80 << 75 >> 76 public: // with description 81 // get the world name 77 // get the world name 82 // If this ScoringMesh is for parallel world << 78 inline const G4String& GetWorldName() const 83 // parallel world If this ScoringMesh is for << 79 { return fWorldName; } 84 // returns name of logical volume << 85 inline const G4String& GetWorldName() const << 86 // get whether this mesh is active or not 80 // get whether this mesh is active or not 87 inline G4bool IsActive() const { return fAct << 81 inline G4bool IsActive() const >> 82 { return fActive; } 88 // set an activity of this mesh 83 // set an activity of this mesh 89 inline void Activate(G4bool vl = true) { fAc << 84 inline void Activate(G4bool vl = true) >> 85 { fActive = vl; } 90 // get the shape of this mesh 86 // get the shape of this mesh 91 inline MeshShape GetShape() const { return f << 87 inline MeshShape GetShape() const >> 88 { return fShape; } 92 // accumulate hits in a registered primitive 89 // accumulate hits in a registered primitive scorer 93 void Accumulate(G4THitsMap<G4double>* map); << 90 void Accumulate(G4THitsMap<G4double> * map); 94 void Accumulate(G4THitsMap<G4StatDouble>* ma << 91 void Accumulate(G4THitsMap<G4StatDouble> * map); 95 // merge same kind of meshes 92 // merge same kind of meshes 96 void Merge(const G4VScoringMesh* scMesh); << 93 void Merge(const G4VScoringMesh * scMesh); 97 // dump information of primitive socrers reg 94 // dump information of primitive socrers registered in this mesh 98 void Dump(); 95 void Dump(); 99 // draw a projected quantity on a current vi 96 // draw a projected quantity on a current viewer 100 void DrawMesh(const G4String& psName, G4VSco << 97 void DrawMesh(const G4String& psName,G4VScoreColorMap* colorMap,G4int axflg=111); 101 G4int axflg = 111); << 102 // draw a column of a quantity on a current 98 // draw a column of a quantity on a current viewer 103 void DrawMesh(const G4String& psName, G4int << 99 void DrawMesh(const G4String& psName,G4int idxPlane,G4int iColumn,G4VScoreColorMap* colorMap); 104 G4VScoreColorMap* colorMap); << 105 // draw a projected quantity on a current vi 100 // draw a projected quantity on a current viewer 106 virtual void Draw(RunScore* map, G4VScoreCol << 101 virtual void Draw(RunScore * map, G4VScoreColorMap* colorMap, G4int axflg=111) = 0; 107 G4int axflg = 111) = 0; << 108 // draw a column of a quantity on a current 102 // draw a column of a quantity on a current viewer 109 virtual void DrawColumn(RunScore* map, G4VSc << 103 virtual void DrawColumn(RunScore * map, G4VScoreColorMap* colorMap, 110 G4int idxProj, G4int << 104 G4int idxProj, G4int idxColumn) = 0; 111 // reset registered primitive scorers 105 // reset registered primitive scorers 112 void ResetScore(); 106 void ResetScore(); 113 107 114 // Following set/get methods make sense only << 115 // set size of this mesh 108 // set size of this mesh 116 void SetSize(G4double size[3]); 109 void SetSize(G4double size[3]); 117 // get size of this mesh 110 // get size of this mesh 118 G4ThreeVector GetSize() const; 111 G4ThreeVector GetSize() const; 119 // set starting and span angles (used only f << 120 void SetAngles(G4double, G4double); << 121 // get angles (used only for tube segment) << 122 inline G4double GetStartAngle() const { retu << 123 inline G4double GetAngleSpan() const { retur << 124 // set position of center of this mesh 112 // set position of center of this mesh 125 void SetCenterPosition(G4double centerPositi 113 void SetCenterPosition(G4double centerPosition[3]); 126 // get position of center of this mesh 114 // get position of center of this mesh 127 G4ThreeVector GetTranslation() const { retur << 115 G4ThreeVector GetTranslation() const {return fCenterPosition;} 128 // set a rotation angle around the x axis 116 // set a rotation angle around the x axis 129 void RotateX(G4double delta); 117 void RotateX(G4double delta); 130 // set a rotation angle around the y axis 118 // set a rotation angle around the y axis 131 void RotateY(G4double delta); 119 void RotateY(G4double delta); 132 // set a rotation angle around the z axis 120 // set a rotation angle around the z axis 133 void RotateZ(G4double delta); 121 void RotateZ(G4double delta); 134 // get a rotation matrix 122 // get a rotation matrix 135 inline G4RotationMatrix GetRotationMatrix() << 123 G4RotationMatrix GetRotationMatrix() const { 136 { << 124 if(fRotationMatrix) return *fRotationMatrix; 137 if(fRotationMatrix != nullptr) << 125 else return G4RotationMatrix::IDENTITY; 138 return *fRotationMatrix; << 139 return G4RotationMatrix::IDENTITY; << 140 } 126 } 141 << 142 // set number of segments of this mesh 127 // set number of segments of this mesh 143 void SetNumberOfSegments(G4int nSegment[3]); 128 void SetNumberOfSegments(G4int nSegment[3]); 144 // get number of segments of this mesh 129 // get number of segments of this mesh 145 void GetNumberOfSegments(G4int nSegment[3]); 130 void GetNumberOfSegments(G4int nSegment[3]); 146 131 147 // register a primitive scorer to the MFD & << 132 // register a primitive scorer to the MFD & set it to the current primitive scorer 148 // scorer << 133 void SetPrimitiveScorer(G4VPrimitiveScorer * ps); 149 void SetPrimitiveScorer(G4VPrimitiveScorer* << 150 // register a filter to a current primtive s 134 // register a filter to a current primtive scorer 151 void SetFilter(G4VSDFilter* filter); << 135 void SetFilter(G4VSDFilter * filter); 152 // set a primitive scorer to the current one 136 // set a primitive scorer to the current one by the name 153 void SetCurrentPrimitiveScorer(const G4Strin << 137 void SetCurrentPrimitiveScorer(const G4String & name); 154 // find registered primitive scorer by the n 138 // find registered primitive scorer by the name 155 G4bool FindPrimitiveScorer(const G4String& p << 139 G4bool FindPrimitiveScorer(const G4String & psname); 156 // get whether current primitive scorer is s 140 // get whether current primitive scorer is set or not 157 inline G4bool IsCurrentPrimitiveScorerNull() << 141 G4bool IsCurrentPrimitiveScorerNull() { 158 { << 142 if(fCurrentPS == nullptr) return true; 159 return fCurrentPS == nullptr; << 143 else return false; 160 } 144 } 161 // get unit of primitive scorer by the name 145 // get unit of primitive scorer by the name 162 G4String GetPSUnit(const G4String& psname); << 146 G4String GetPSUnit(const G4String & psname); 163 // get unit of current primitive scorer 147 // get unit of current primitive scorer 164 G4String GetCurrentPSUnit(); 148 G4String GetCurrentPSUnit(); 165 // set unit of current primitive scorer 149 // set unit of current primitive scorer 166 void SetCurrentPSUnit(const G4String& unit); 150 void SetCurrentPSUnit(const G4String& unit); 167 // get unit value of primitive scorer by the 151 // get unit value of primitive scorer by the name 168 G4double GetPSUnitValue(const G4String& psna << 152 G4double GetPSUnitValue(const G4String & psname); 169 // set PS name to be drawn 153 // set PS name to be drawn 170 inline void SetDrawPSName(const G4String& ps << 154 void SetDrawPSName(const G4String & psname) {fDrawPSName = psname;} 171 155 172 // get axis names of the hierarchical divisi 156 // get axis names of the hierarchical division in the divided order 173 void GetDivisionAxisNames(G4String divisionA 157 void GetDivisionAxisNames(G4String divisionAxisNames[3]); 174 158 175 // set current primitive scorer to NULL 159 // set current primitive scorer to NULL 176 void SetNullToCurrentPrimitiveScorer() { fCu << 160 void SetNullToCurrentPrimitiveScorer() {fCurrentPS = nullptr;} 177 // set verbose level 161 // set verbose level 178 inline void SetVerboseLevel(G4int vl) { verb << 162 inline void SetVerboseLevel(G4int vl) >> 163 { verboseLevel = vl; } 179 // get the primitive scorer map 164 // get the primitive scorer map 180 inline MeshScoreMap GetScoreMap() const { re << 165 inline MeshScoreMap GetScoreMap() const >> 166 { return fMap; } 181 // get whether this mesh setup has been read 167 // get whether this mesh setup has been ready 182 inline G4bool ReadyForQuantity() const { ret << 168 inline G4bool ReadyForQuantity() const >> 169 { return (sizeIsSet && nMeshIsSet); } 183 170 184 // protected: << 171 protected: 185 // get registered primitive socrer by the na 172 // get registered primitive socrer by the name 186 G4VPrimitiveScorer* GetPrimitiveScorer(const << 173 G4VPrimitiveScorer * GetPrimitiveScorer(const G4String & name); 187 << 188 inline void SetMeshElementLogical(G4LogicalV << 189 { << 190 fMeshElementLogical = val; << 191 } << 192 inline G4LogicalVolume* GetMeshElementLogica << 193 { << 194 return fMeshElementLogical; << 195 } << 196 << 197 inline void SetParallelWorldProcess(G4Parall << 198 { << 199 fParallelWorldProcess = proc; << 200 } << 201 inline G4ParallelWorldProcess* GetParallelWo << 202 { << 203 return fParallelWorldProcess; << 204 } << 205 inline void GeometryHasBeenDestroyed() << 206 { << 207 fGeometryHasBeenDestroyed = true; << 208 fMeshElementLogical = nullptr; << 209 } << 210 << 211 // Geometry hirarchy level (bottom = 0) to b << 212 // This is used only for real-world scorer << 213 inline void SetCopyNumberLevel(G4int val) { << 214 inline G4int GetCopyNumberLevel() const { re << 215 << 216 inline G4bool LayeredMassFlg() { return laye << 217 << 218 protected: << 219 << 220 // a pure virtual function to construct this << 221 virtual void SetupGeometry(G4VPhysicalVolume << 222 << 223 protected: << 224 174 225 G4String fWorldName; << 175 protected: 226 G4VPrimitiveScorer* fCurrentPS; << 176 G4String fWorldName; 227 G4bool fConstructed; << 177 G4VPrimitiveScorer * fCurrentPS; 228 G4bool fActive; << 178 G4bool fConstructed; >> 179 G4bool fActive; 229 MeshShape fShape; 180 MeshShape fShape; 230 181 231 G4double fSize[3]; 182 G4double fSize[3]; 232 G4double fAngle[2]; << 233 G4ThreeVector fCenterPosition; 183 G4ThreeVector fCenterPosition; 234 G4RotationMatrix* fRotationMatrix; << 184 G4RotationMatrix * fRotationMatrix; 235 G4int fNSegment[3]; 185 G4int fNSegment[3]; 236 186 237 MeshScoreMap fMap; 187 MeshScoreMap fMap; 238 G4MultiFunctionalDetector* fMFD; << 188 G4MultiFunctionalDetector * fMFD; 239 189 240 G4int verboseLevel; 190 G4int verboseLevel; 241 191 242 G4bool sizeIsSet; 192 G4bool sizeIsSet; 243 G4bool nMeshIsSet; 193 G4bool nMeshIsSet; 244 194 245 G4String fDrawUnit; 195 G4String fDrawUnit; 246 G4double fDrawUnitValue; 196 G4double fDrawUnitValue; 247 G4String fDrawPSName; 197 G4String fDrawPSName; 248 198 249 G4String fDivisionAxisNames[3]; 199 G4String fDivisionAxisNames[3]; 250 200 251 G4LogicalVolume* fMeshElementLogical; << 201 G4LogicalVolume * fMeshElementLogical; 252 202 >> 203 public: >> 204 inline void SetMeshElementLogical(G4LogicalVolume* val) >> 205 { fMeshElementLogical = val; } >> 206 inline G4LogicalVolume* GetMeshElementLogical() const >> 207 { return fMeshElementLogical; } >> 208 >> 209 protected: 253 G4ParallelWorldProcess* fParallelWorldProces 210 G4ParallelWorldProcess* fParallelWorldProcess; 254 G4bool fGeometryHasBeenDestroyed; 211 G4bool fGeometryHasBeenDestroyed; 255 << 212 public: 256 G4int copyNumberLevel; << 213 inline void SetParallelWorldProcess(G4ParallelWorldProcess* proc) 257 << 214 { fParallelWorldProcess = proc; } 258 // This flag may be set to true for Probe sc << 215 inline G4ParallelWorldProcess* GetParallelWorldProcess() const 259 // There is no public set method for this bo << 216 { return fParallelWorldProcess; } 260 // to true through SetMaterial() method of P << 217 inline void GeometryHasBeenDestroyed() 261 G4bool layeredMassFlg; << 218 { >> 219 fGeometryHasBeenDestroyed = true; >> 220 fMeshElementLogical = nullptr; >> 221 } 262 }; 222 }; 263 223 264 #endif 224 #endif >> 225 265 226