
山下智弘

JST CREST/神戸大学

Borrowing especially from presentations of M. Asai(SLAC)

Geant4 Tutorial @ Japan 2007

17-19 Oct, 2007 @ RCNS, based on Geant4 9.0.p01

Outline

I. Mandatory user classes

II. User actions

III. How to write main()

IV. How to configure/build user applications

V. How to run user applications

VI. UI commands and macro

VII. How to visualize

My Application

MyDetectorConstruction
Material, volume

MyPhysicsList
Particles, processes, cuts

MyPrimaryGeneratorAction
Primary track generation

I. Mandatory user classes
 Geant4 is a toolkit. You have to build an application.

 To make an application, you have to
1. Define your geometrical setup

G4VUserDetectorConstruction - Material, volume

2. Define physics to get involved

G4VUserPhysicsList - Particles, physics processes/models

Production thresholds

3. Define how an event starts

G4VUserPrimaryGeneratorAction - Primary track generation

G4VUser
DetectorConstruction

G4VUserPhysicsList
G4VUser

PrimaryGeneratorAction

I. Mandatory user classes

1. DetectorConstruction
 Derive your own concrete class from

G4VUserDettectorConstruction abstract base class.
 e.g. class MyDetectorConstruction : public G4VUserDetectorConstruction

 In the virtual method Construct() of your
UserDetectorConstruction
 Define all necessary materials

 Define volumes of your detector geometry

 Optionally you can define
 your sensitive detector classes and set them to the

corresponding logical volumes

 Regions for any part of your detector

 Visualization attributes (color, visibility, etc.) of your detector
elements

I. Mandatory user classes

2. PhysicsList
 Geant4 does not have any default particles or

processes.
 Even for the particle transportation, you have to define it

explicitly.

 Derive your own concrete class from
G4VUserPhysicsList abstract base class.
 Define all necessary particles

 Define all necessary processes and assign them to proper
particles

 Define cut-off ranges applied to the world (and each
region)

 Geant4 provides lots of utility classes/methods and
examples.
 "Educated guess" physics lists for defining hadronic

processes for various use-cases.

I. Mandatory user classes

3. PrimaryGeneratorAction
 Derive your concrete class from

G4VUserPrimaryGeneratorAction abstract base
class.

 Pass a G4Event object to one or more primary
generator concrete class objects which generate
primary vertices and primary particles.

 Geant4 provides several generators in addition
to the G4VPrimaryGenerator base class.
 G4ParticleGun

 G4HEPEvtInterface, G4HepMCInterface

○ Interface to /hepevt/ common block or HepMC class

 G4GeneralParticleSource

○ Define radioactivity

II. User actions(1)

 5 user action classes

 methods of which are invoked during

“Beam On”

 G4UserRunAction

 G4UserEventtAction

 G4UserStackingAction

 G4UserTrackingAction

 G4UserSteppingAction

II. User actions(2)

 G4UserRunAction
 G4Run* GenerateRun()

○ Instantiate user-customized run object

 void BeginOfRunAction(const G4Run*)
○ Define histograms, TTree

 void EndOfRunAction(const G4Run*)
○ Store histograms, TTree

 G4UserEventAction
 void BeginOfEventAction(const G4Event*)

○ Event selection

 void EndOfEventAction(const G4Event*)
○ Analyze the event

II. User actions(3)

 G4UserStackingAction
 void PrepareNewEvent()

○ Reset priority control

 G4ClassificationOfNewTrack
ClassifyNewTrack(const G4Track*)
○ Invoked every time a new track is pushed

○ Classify a new track - priority control

○ Urgent, Waiting, PostponeToNextEvent, Kill

 void NewStage()
○ Invoked when the Urgent stack becomes empty

○ Change the classification criteria

○ Event filtering (Event abortion)

II. User actions(4)

 G4UserTrackingAction

 void PreUserTrackingAction(const G4Track*)

○ Decide trajectory should be stored or not

○ Create user-defined trajectory

 void PostUserTrackingAction(const G4Track*)

 G4UserSteppingAction

 void UserSteppingAction(const G4Step*)

○ Kill / suspend / postpone the track

○ Draw the step (for a track not to be stored as a

trajectory)

III. How to write main
 Geant4 does not provide the main()

 In your main(), you have to
 Construct G4RunManager (or your derived class)

 Set user mandatory classes to RunManager
○ Use G4RunManager::SetUserInitialization() to set
 G4VUserDetectorConstruction

 G4VUserPhysicsList

○ Use G4RunManager:::SetUserAction() to set
 G4VUserPrimaryGeneratorAction

 And optional user action classes

 You can define VisManager, (G)UI session in your
main().

G4RunManager

MyDetector
Construction

G4VUser
DetectorConstruction

MyPhysicsList G4VUserPhysicsList

MyPrimary
GeneratorAction

G4VUser
PrimaryGeneratorAction

III. How to write main(2)

example
int main(int argc, char** argv)

{

G4RunManager* runManager = new G4RunManager;

G4VUserDetectorConstruction* detector =

new MyDetectorConstruction();

runManager->SetUserInitialization(detector);

//

G4VUserPhysicsList* physics =

new HadrontherapyPhysicsList;

runManager->SetUserInitialization(physics);

G4VUserPrimaryGeneratorAction* gen_action =

new MyPrimaryGeneratorAction();

runManager->SetUserAction(gen_action);

…

Construct

G4RunManager

Construct mandatory

initialization classes

Set mandatory

initialization classes

to G4RunManager

Construct mandatory

action class and set

to G4RunManager

III. How to write main(2)

example cotnd.
…

G4UserRunAction* run_action = new MyRunAction;
runManager->SetUserAction(run_action);

runManager->Initialize();

if (argc != 1) { // batch mode
G4UImanager * UI = G4UImanager::GetUIpointer();
G4String command = "/control/execute ";
G4String fileName = argv[1];
UI->ApplyCommand(command+fileName);

} else { // interactive mode : define UI terminal
G4UIsession * session = new G4UIterminal(new G4UItcsh);
session->SessionStart();
delete session;

}

delete runManager;
return 0;

}

Construct non-mandatory

action class and set

to G4RunManager

Initialize G4 kernel

Start a run

Delete G4 kernel

IV. How to configure/build user applications

1. Environment variables

 Mandatory variables
 G4SYSTEM – OS (e.g. Linux-g++)

 G4INSTALL – base directory of Geant4

 CLHEP_BASE_DIR – base directory of CLHEP

 Variables for physics processes in case
corresponding processes are used
 G4LEVELGAMMADATA - photon evaporation

 G4LEDATA - cross-sections for Low-E EM module

 G4RADIOACTIVEDATA - radioactive decay

 G4NEUTRONHPDATA - neutron cross-section

 Additional variables for GUI/Vis/Analysis

IV. How to configure/build user applications

2. Source files

 Prepare directory for your application. In that
directory
 myApplication.cc

○ File in which main() is defined

 src/

○ Source files of mandatory user classes and optional user
run action classes

 includes/

○ Header files

 GNUmakefile

ApplicationDirectory/

src/

include/

GNUmakefile

myApplication.cc

src/

MyDetectorConstruction.cc

MyPhyiscsList.cc

*.cc
include/

MyDetectorConstruction.hh

MyPhyiscsList.hh

*.hh

IV. How to configure/build user applications

3. GNUmakefile

name := myApplication

G4TARGET := $(name)

G4EXLIB := true

G4WORKDIR := .

.PHONY: all

all: lib bin

include $(G4INSTALL)/config/binmake.gmk

 Command gmake will create
 executable in bin/$G4SYSTEM/

 temporary object files in tmp/$G4SYSTEM/myApplication/

V. How to run user applications

1. Ways to run Geant4 application

 There are 3 Ways to run Geant4

application

 Hard-coded batch mode

 interactive mode, driven by command lines

○ Use G4UIsession

 batch mode, but reading a macro of

commands

○ Use G4UIsession

 interactive mode via a Graphical User Interface

V. How to run user applications

2. Using G4UIsession
 In your main main(), according to your

computer environments, construct a
G4UIsession concrete class provided by
Geant4 and invoke its sessionStart() method.

 Geant4 provides
 G4UIterminal and G4UItcsh

○ character terminal

 G4UIXm, G4UIXaw and G4UIWin32
○ variations of the upper terminal by using a Motif, Athena

or Windows widget

 G4UIGAG and G4UIGainServer
○ a fully Graphical User Interface and its extension

GainServer of the client/server type

V. How to run user applications
3. How to write main() for using UIsession

...

int main(int argc, char** argv) {

...

if (argc != 1) { // batch mode

G4UImanager * UI = G4UImanager::GetUIpointer();

G4String command = "/control/execute ";

G4String fileName = argv[1];

UI->ApplyCommand(command+fileName);

}

else { // interactive mode : define UI terminal

G4UIsession * session =

new G4UIterminal(new G4UItcsh);

session->SessionStart();

delete session;

}

...

VI. UI commands and macro

 A command consists of
 Command directory

 Command

 Parameter(s)

 A parameter can be a type of string, boolean, integer or
double.
 Space is a delimiter.

 Use double-quotes (“”) for string with space(s).

 A parameter may be “omittable”. If it is the case, a default
value will be taken if you omit the parameter.
 Default value is either predefined default value or current value

according to its definition

 If you want to use the default value for your first parameter while
you want to set your second parameter, use “!” as a place holder.

dir/command ! Second

/run/beamOn 1

VI. UI commands and macro

1. Command submission

 Geant4 UI command can be issued by
 Hard-coded implementation

 (G)UI interactive command submission

 Macro file

 The availability of individual command, the
ranges of parameters vary
 implementation of your application

 May vary dynamically during the execution

 some commands are available only for limited
Geant4 application state(s).

E.g. /run/beamOn is available only for Idle states.

VI. UI commands and macro

2. Marco file
 Macro file is an ASCII file contains UI commands.

 All commands must be given with their full-path
directories.

 Use “#” for comment line.
 First “#” to the end of the line will be ignored.

 Comment lines will be echoed if /control/verbose is set
to 2.

 Macro file can be executed
 interactively or in (other) macro file

/control/execute file_name

 hard-coded

G4UImanager* UI = G4UImanager::GetUIpointer();

UI->ApplyCommand("/control/execute file_name");

VI. UI commands and macro

3. Command refusal

 Command will be refused if

 Wrong application state

 Wrong type of parameter

 Insufficient number of parameters

 Parameter out of its range

 For integer or double type parameter

 Parameter out of its candidate list

 For string type parameter

 Command not found

VI. UI commands and macro

4. G4UIterminal
 G4UIterminal is a concrete implementation derived from

G4UIsession abstract class. It provides character-base interactive
terminal functionality to issue Geant4 UI commands
 C-shell or TC-shell (Linux only)

 It supports some Unix-like commands for directory manipulation
 cd, pwd - change and display current command directory

○ By setting the current command directory, you may omit (part of) directory
string

 ls - list available UI commands and sub--directories

 It also supports some other commands
 history - show previous commands

 ! historyID -re-issue previous command

 arrow keys (TCarrow TC--shell only)

 ? UIcommand - show current value

 help [UIcommand] – help

 exit – job termination

 Above commands are interpreted in G4UIterminal and are not
passed to Geant4 kernel. Cannot use them in a macro file.

VI. UI commands and macro

4. G4UIterminal example
Idle> ls

Command directory path : /

Sub-directories :

/control/ UI control commands.

/units/ Available units.

/persistency/ Control commands for Persistency package

/geometry/ Geometry control commands.

/tracking/ TrackingManager and SteppingManager control commands.

/event/ EventManager control commands.

/run/ Run control commands.

/random/ Random number status control commands.

/particle/ Particle control commands.

/process/ Process Table control commands.

/physics/ ...Title not available...

/gun/ Particle Gun control commands.

/vis/ Visualization commands.

/material/ Commands for materials

/hits/ Sensitive detectors and Hits

Commands :

Idle>

VI. UI commands and macro

4. G4UIterminal example contd.
Idle> cd control/

Idle>ls

Command directory path : /control/

Guidance :

UI control commands.

Sub-directories :

/control/matScan/ Material scanner commands.

Commands :

execute * Execute a macro file.

loop * Execute a macro file more than once.

foreach * Execute a macro file more than once.

suppressAbortion * Suppress the program abortion caused by G4Exception.

verbose * Applied command will also be shown on screen.

…

createHTML * Generate HTML files for all of sub-directories and commands.

maximumStoredHistory * Set maximum number of stored UI commands.

Idle>

VI. UI commands and macro

4. G4UIterminal example contd.
Idle> help /gun/energy

Command /gun/energy
Guidance :
Set kinetic energy.

Parameter : Energy
Parameter type : d
Omittable : True
Default value : taken from the current value

Parameter : Unit
Parameter type : s
Omittable : True
Default value : GeV
Candidates : eV keV MeV GeV TeV PeV J electronvolt kiloelectronvolt

megaelectronvolt gigaelectronvolt teraelectronvolt petaelectronvolt joule

Idle>

VII. How to visualize

1. What can be visualized

 Simulation data can be visualized:
 Detector components

 Particle trajectories and tracking steps

 Hits of particles in detector components

 Other user defined objects can be visualized:
 Polylines

○ such as coordinate axes

 3D Markers

○ such as eye guides

 Text

○ descriptive character strings

○ comments or titles …

VII. How to visualize

2. Seven Visualization Drivers

 OpenGL

 OpenInventor

 HepRep/WIRED (and FRED)

 DAWN

 VRML

 RayTracer

 ASCIITree

HepRep/HepRApp

OpenGL

OpenInventor

DAWN

RayTracer

HepRep/FRED

VRML

VII. How to visualize
3. Choose the Driver that Meets your Current Needs

 If you want responsive
 OpenGL

 If you want interactivity
 OpenInventor, HepRep/WIRED

 If you want highest quality
 DAWN

 If you want to render to a 3D format that others can
view in a variety of commodity browsers
 VRML

 If you want photo-realistic high quality
 RayTrace

 If you want to quickly check the geometry hierarchy
 ASCIITree

VII. How to visualize
4. Adding Visualization to Your Executable

 Visualization Drivers must be installed

 Environmental variables may be needed
 G4VIS_BUILD_DRIVERNAME_DRIVER and G4VIS_USE_DRIVERNAME

 How to write the main()
…

#ifdef G4VIS_USE

#include "G4VisExecutive.hh"

#endif

…

#ifdef G4VIS_USE

G4VisManager* visManager = new G4VisExecutive;

visManager->Initialize();

#endif

…

#ifdef G4VIS_USE

delete visManager;

#endif

…

Create DAWN file

VII. How to visualize

5. Visualization commands
 Visualize a detector using DAWN

/vis/open DAWNFILE

/vis/drawVolume

/vis/viewer/flush

 Visualize trajectories for 10 events using
OpenGL
/vis/open OGLIX

/vis/viewer/set/viewpointThetaPhi 70 20

/vis/viewer/zoom 2

/vis/drawVolume

/vis/scene/add/trajectories

/vis/scene/endOfEventAction accumulate

/run/beamOn 10

Draw trajectories of particles

Camera control

Accumulate trajectories in a figure

Draw detector

Execute the visualization

VII. How to visualize
6. Controlling visualization attributes

 In Construct() of DetectorConstruction

…

logicCalor = new G4LogicalVolume(…);

…

G4VisAttributes* simpleBoxVisAtt =

new G4VisAttributes(G4Colour(1.0, 0, 0));

logicCalor->SetVisAttributes(simpleBoxVisAtt);

logicWorld

->SetVisAttributes(G4VisAttributes::Invisible);

…

