
山下智弘

JST CREST/神戸大学

Borrowing especially from presentations of M. Asai(SLAC)
Geant4 Tutorial @ Japan 2007

17-19 Oct, 2007 @ RCNS, based on Geant4 9.0.p01
1

Outline
I. Introduction
II. Sensitive detector
III. Hits and hit collection
IV. How to describe detector sensitivity
V. Touchable

2

Given geometry, physics and primary track
generation, Geantt4 does proper physics
simulation “silently”.

Need a bit of code to extract useful information
There are two ways:

Use user hooks (G4UserTrackingAction,
G4UserSteppingAction, etc.)
○ You have full access to almost all information
○ Straight-forward, but DIY(do-it-yourself)
Use Geant4 scoring functionality
○ Assign G4VSensitiveDetector to interested

logical volume

I. Introduction

3

II Sensitive detector
Introduction
In ProcessHits method, sensitive detector creates hits from
step and store them into HitsCollection
HitsCollection will be stored in G4HCofThisEvent of G4Event

G
4E

vent
N

ot
 S

en
si

tiv
e

D
et

ec
to

r Hit
HitHitHitHit

Position
Energy deposit
Etc. ProcessHitsS

en
si

tiv
e

D
et

ec
to

r

Step

H
itsC

ollectionO
fThitsE

vent
G

4H
C

ofThisE
vent

HitsCollectionOfThisEvent will be
accessible at the end of event
G4UserEventAction::EndOfEventAction

HitsCollection

4

Class diagram

5

G4LogicalVolume

G4VSensitiveDetector

G4MultiFunctionalDetector
userSensitiveDetector

G4Event

G4HCofThisEvent

G4VHitsCollection
G4THitsCollection

G4THitsMap

userHitsCollection
or userHitsMap

G4VHit

userHit

G4VPrimitiveSensitivity

Concrete class provided by G4
Abstract base class provided by G4
Template class provided by G4

User’s class

G4PSDoseScorer hits map

has

kind of

G4PSDoseScorer hits map
G4PSDoseScorer hits map

G4PSDoseScorer hits map
G4PSDoseScorer hits map

0..1

n

1

n

n

n

n

1

II. Sensitive detector
1. Sensitive detector and Hit

Each LOGICAL VOLUME can have a pointer to a
sensitive detector.

Then this volume becomes SENSITIVE.
HIT is a snapshot of the physical interaction of a
track or an accumulation of interactions of tracks in
the sensitive region of your detector.

Position, energy deposit, etc.
A sensitive detector creates hit(s) using the
information given in G4Step object. The user has to
provide his/her own implementation of the detector
response.
Hit objects, which are still the user’s class objects,
are collected in a G4Event object at the end of an
event.

6

II. Sensitive detector
2. What can be Sensitive detector

A tracker detector typically generates a hit for
every single step of every single (charged) track.

A tracker hit typically contains
○ Position and time
○ Energy deposition of the step
○ Track ID

A calorimeter detector typically generates a hit
for every cell, and accumulates energy
deposition in each cell for all steps of all tracks.

A calorimeter hit typically contains
○ Sum of deposited energy
○ Cell IID

7

II. Sensitive detector
3. Step

Step has two points and also “delta” information of a
particle (energy loss on the step, time-of-flight spent
by the step, etc.).
Each point knows the volume (and material). In case
a step is limited by a volume boundary, the end point
physically stands on the boundary, and it logically
belongs to the next volume.
Note that you must get the volume information from
the “PreStepPoint”.

Pre-step point
Post-step point

Step

Boundary

8

II. Sensitive detector
4. G4SDManager

All Sensitive Detectors must be REGISTERED with the
SDM in order to function properly (tip: do it in the SD’s
constructor):

G4SDManager *sdman=G4SDManager::GetSDMpointer()
sdman->AddSensitiveDetector (this);

A Sensitive Detector Manager (of type G4SDManager)
oversees to all operations by Sensitive Detectors.
The SDM is a singleton (only one object at any moment)
and can be accessed by using its static method

G4SDManager::GetSDMpointer()
The SDM can return a hit collection ID (useful for fishing
out your collection from the hits collections of the event
sdman->GetCollectionID(“My Collection”);

9

II. Sensitive detector
5. Digitizer module and digit

Digit represents a detector output (e.g.
ADC/TDC count, trigger signal, etc.).
Digit is created with one or more hits and/or
other digits by a user's concrete implementation
derived from G4VDigitizerModule.
In contradiction to the sensitive detector which
is accessed at tracking time automatically, the
digitize() method of each G4VDigitizerModule
must be explicitly invoked by the user s code
(e.g. at user’s EventAction).

10

II. Sensitive detector
6. Defining a sensitive detector

Basic strategy

G4LogicalVolume* myLogCalor = ……;
G4VSensetiveDetector* pSensetivePart =

new MyDetector(“/mydet”);
G4SDManager* SDMan = G4SDManager::GetSDMpointer();
SDMan->AddNewDetector(pSensitivePart);
myLogCalor->SetSensitiveDetector(pSensetivePart);

Each detector object must have a unique name..
Some logical volumes can share one detector object.
More than one detector objects can be made from one detector class with
different detector name.
One logical volume cannot have more than one detector objects. But, one
detector object can generate more than one kinds of hits.
○ e.g. a double-sided silicon micro-strip detector can generate hits for

each side separately.

11

III. Hits and hit collection
1. Hit class

Hit is a user-defined class derived from G4VHit.
You can store various types information by implementing your own
concrete Hit class. For example:

Position and time of the step
Momentum and energy of the track
Geometrical information
Etc. or any combination of above

Hit objects of a concrete hit class must be stored in a dedicated
collection which is instantiated from G4THitsCollection template
class.
The collection will be associated to a G4Event object via
G4HCofThisEvent.
Hits collections are accessible

through G4Event at the end of event.
to be used for analyzing an event
through G4SDManager during processing an event.
to be used for event filtering.

12

III. Hits and hit collection
2. G4HCofThisEvent

A G4Event object has a G4HCofThisEvent object at the
end of (successful) event processing. G4HCofThisEvent
object stores all hits collections made within the event.

Pointer(s) to the collections may be NULL if collections are not
created in the particular event.
Hits collections are stored by pointers of G4VHitsCollection base
class. Thus, you have to cast them to types of individual concrete
classes.
The index number of a Hits collection is unique and unchanged for
a run. The index number can be obtained by
G4SDManager::GetCollectionID(“detName/colName”);

○ The index table is also stored in G4Run.

13

IV. How to describe detector sensitivity
1. Implementation of Hit(1) MyHit.hh
#include "G4VHit.hh"
#include “G4THitsCollection.hh”
#include "G4Allocator.hh"
class MyHit : public G4VHit {
public:

MyHit(some_arguments);
virtual ~MyHit();
virtual void Draw();

private:
// some data members

public:
// some set/get methods

};

typedef G4THitsCollection<MyHit> MyHitsCollection;

14

IV. How to describe detector sensitivity
1. Implementation of Hit(2) MyHit.hh
extern G4Allocator<MyHit> MyHitAllocator;

inline void* MyHit::operator new(size_t)
{

void *aHit;
aHit = (void *) MyHitAllocator.MallocSingle();
return aHit;

}

inline void MyHit::operator delete(void *aHit)
{

MyHitAllocator.FreeSingle((ExN04CalorimeterHit*) aHit);
}

15

private:
G4double edep;
G4ThreeVector pos;

public:
inline void SetEdep(G4double de)
{ edep = de; }
inline G4double GetEdep()
{ return edep; }
inline void SetPos(G4ThreeVector xyz)
{ pos = xyz; }
inline G4ThreeVector GetPos()
{ return pos; }

IV. How to describe detector sensitivity
1. Implementation of Hit(3) MyHit.hh

16

IV. How to describe detector sensitivity
1. Implementation of Hit(4) MyHit.cc

G4Allocator<MyHit> MyHitAllocator;

MyHit::MyHit() {}
MyHit::MyHit() {}

ExN02TrackerHit::ExN02TrackerHit(const ExN02TrackerHit& right)
: G4VHit() {
edep = right.edep;
pos = right.pos;

}

const MyHit& MyHit::operator=(const MyHit& right) {
edep = right.edep;
pos = right.pos;
return *this;

}

G4int MyHit::operator==(const MyHit& right) const {
return (this == &right) ? 1 : 0;

} 17

IV. How to describe detector sensitivity
2. Implementation of Sensitive Detector(1)

Sensitive detector is a user-defined class derived from G4VSensitiveDetector.

#include "G4VSensitiveDetector.hh"
#include "MyHit.hh"
class G4Step;
class G4HCofThisEvent;
class MyDetector : public G4VSensitiveDetector
{
public:

MyDetector(G4String name);
virtual ~MyDetector();
virtual void Initialize(G4HCofThisEvent*HCE);
virtual G4bool ProcessHits(G4Step*aStep,

G4TouchableHistory*ROhist);
virtual void EndOfEvent(G4HCofThisEvent*HCE);

private:
MyHitsCollection * hitsCollection;
G4int collectionID;

}; 18

IV. How to describe detector sensitivity
2. Implementation of Sensitive Detector(2)

MyDetector::MyDetector(G4String detector_name)
:G4VSensitiveDetector(detector_name),
collectionID(-1)

{
collectionName.insert(“collection_name");

}

In the constructor, define the name of the hits
collection which is handled by this sensitive detector
In case your sensitive detector generates more than
one kinds of hits (e.g. anode and cathode hits
separately), define all collection names.

19

IV. How to describe detector sensitivity
2. Implementation of Sensitive Detector(3)

void MyDetector::Initialize(G4HCofThisEvent*HCE)
{

if(collectionID<0) collectionID = GetCollectionID(0);
hitsCollection = new MyHitsCollection

(SensitiveDetectorName,collectionName[0]);
HCE->AddHitsCollection(collectionID,hitsCollection);

}

Initialize() method is invoked at the beginning of each event.
Get the unique ID number for this collection.
GetCollectionID() is a heavy operation. It should not be used for
every events.
GetCollectionID() is available after this sensitive detector object is
constructed and registered to G4SDManager. Thus, this method
cannot be invoked in the constructor of this detector class.
Instantiate hits collection(s) and attach it/them to G4HCofThisEvent
object given in the argument. 20

IV. How to describe detector sensitivity
2. Implementation of Sensitive Detector(4)

G4bool MyDetector::ProcessHits
(G4Step*aStep,G4TouchableHistory*ROhist)

{
MyHit* aHit = new MyHit();
...
// some set methods
...
hitsCollection->insert(aHit);
return true;

}

This ProcessHits() method is invoked for every steps in the volume(s) where
this sensitive detector is assigned.
In this method, generate a hit corresponding to the current step (for tracking
detector), or accumulate the energy deposition of the current step to the
existing hit object where the current step belongs to (for calorimeter detector).
Don’t forget to collect geometry information (e.g. copy number) from
“PreStepPoint”.

21

IV. How to describe detector sensitivity
2. Implementation of Sensitive Detector(5)

void MyDetector::EndOfEvent(G4HCofThisEvent*HCE)
{;}

This method is invoked at the end of
processing an event.
It is invoked even if the event is aborted.
It is invoked before UserEndOfEventAction.

22

IV. How to describe detector sensitivity
3. Usage of G4HCofThisEvent
void MyEventAction::EndOfEventAction(const G4Event* evt) {

static int CHCID = -1;
If(CHCID<0) CHCID = G4SDManager::GetSDMpointer()

->GetCollectionID("myCal/collection1");
G4HCofThisEvent* HCE = evt->GetHCofThisEvent();
MyHitsCollection* CaloHitsColl = 0;
if(HCE)
{ CaloHitsColl = (MyHitsCollection*)(HCE->GetHC(CHCID)); }
if(CaloHitsColl) {

int n_hit = CaloHitsColl->entries();
G4cout<<“My detector has ”<<n_hit<<" hits."<<G4endl;
for(int i1=0;i1<n_hit;i1++) {

MyHit* aHit = (*CaloHitsColl)[i1];
aHit->Print();

}
}

} 23

V. Touchable
1. Copy number of replicated volume

Suppose a geometry is made of
sensitive layers C which are placed
in a volume B

Volume B is a daughter volume
of a divided volume A

The volume A has a
24 positions in the
world
While in the 'logical'
geometry tree the
volume C is
represented by just
one physical volume,
in the real world
there are many C
'volumes'
How can we then
identify these
volumes C ?
TOUCHABLE!

A

C
B

B

A
24

V. Touchable
2. Touchable

A touchable for a volume serves
the purpose of providing a unique
identification for a detector
element
It is a geometrical entity (volume
or solid) which has a unique
placement in a detector
description

It can be uniquely identified by
providing the copy numbers for all
daughters in the geometry hierarchy
In our case these are
○ CopyNo of C in B: 1
○ CopyNo of B in A: 1,2,3
○ CopyNo of A in the world: 1, .., 24
Example of touchable identification:
○ A.3/B.2/C.1

C.1

B.1
B.2
B.3

A.1
A.2 A.3

25

V. Touchable
2. TouchableHistory

G4bool ExN04CalorimeterSD::ProcessHits(G4Step*aStep,
G4TouchableHistory*ROhist){

G4TouchableHistory
Representing a touchable detector element, and its history in the geomtrical
hierarchy, including its net resultant local->global transform.
depth means always the number of levels up in the tree to be considered:
depth = 0 : the bottom level (volume C in B)
depth = 1 : the level of its mother volume (volume B in A)
depth = 2 : the grandmother volume (volume A in world)

G4int GetCopyNumber(G4int depth =0)
returns the copy number of the given level of current volume

G4ThreeVector& GetTranslation(G4int depth = 0)
return the components of the volume's transformation

G4RotationMatrix* GetRotation(G4int depth=0)
returns the rotation matrix

GetVolume(G4int depth =0)
returns the physical volume

26

V. Touchable
3. Touchable usage

Full geometrical information available via touchable
to processes, to user code, sensitive detectors, hits

G4bool CalorimeterSD::ProcessHits(G4Step*aStep, G4TouchableHistory*) {
G4double edep = aStep->GetTotalEnergyDeposit();

if(edep==0.) return false;

const G4TouchableHandle touchable
= aStep->GetPreStepPoint()->GetTouchableHandle();

G4VPhysicalVolume* physVol = ROhist->GetVolume();
G4int copyIDinZ = touchable->GetCopyNumber();
G4int copyIDinPhi = touchable ->GetCopyNumber(1);
if(CellID[copyIDinZ][copyIDinPhi]==-1) {

CalorimeterHit* calHit = new CalorimeterHit (…)
…

27

28

Backup slides start here

29

IV. How to describe detector sensitivity
4. When to invoke GetCollectionID()?

Which is the better place to invoke
G4SDManager::GetCollectionID() in a user event action class,
in its constructor or in the BeginOfEventAction()?
It actually depends on the user's application.

Note that construction of sensitive detectors (and thus registration of
their hits collections to SDManager) takes place when the user issues
RunManager::Initialize(), and thus the user’s geometry is constructed.

In case user's EventAction class should be instantiated before
Runmanager::Initialize() (or /run/initialize command),
GetCollectionID() should not be in the constructor of
EventAction.
While, if the user has nothing to do to Geant4 before
RunManager::Initialize(), this initialize method can be hard-
coded in the main() before the instantiation of EventAction (e.g.
exampleA01), so that GetCollectionID() could be in the
constructor.

30

II. Sensitive detector
Class diagram

31

	Sensitive Detector and Hits
	Outline
	I. Introduction
	II Sensitive detector�Introduction
	Class diagram
	II. Sensitive detector�1. Sensitive detector and Hit
	II. Sensitive detector�2. What can be Sensitive detector
	II. Sensitive detector�3. Step
	II. Sensitive detector�4. G4SDManager
	II. Sensitive detector �5. Digitizer module and digit
	II. Sensitive detector�6. Defining a sensitive detector
	III. Hits and hit collection�1. Hit class
	III. Hits and hit collection�2. G4HCofThisEvent
	IV. How to describe detector sensitivity �1. Implementation of Hit(1) MyHit.hh
	IV. How to describe detector sensitivity �1. Implementation of Hit(2) MyHit.hh
	IV. How to describe detector sensitivity �1. Implementation of Hit(3) MyHit.hh
	IV. How to describe detector sensitivity �1. Implementation of Hit(4) MyHit.cc
	IV. How to describe detector sensitivity�2. Implementation of Sensitive Detector(1)
	IV. How to describe detector sensitivity�2. Implementation of Sensitive Detector(2)
	IV. How to describe detector sensitivity�2. Implementation of Sensitive Detector(3)
	IV. How to describe detector sensitivity�2. Implementation of Sensitive Detector(4)
	IV. How to describe detector sensitivity�2. Implementation of Sensitive Detector(5)
	IV. How to describe detector sensitivity �3. Usage of G4HCofThisEvent
	V. Touchable�1. Copy number of replicated volume
	V. Touchable�2. Touchable
	V. Touchable�2. TouchableHistory
	V. Touchable�3. Touchable usage
	スライド番号 28
	Backup slides start here
	IV. How to describe detector sensitivity�4. When to invoke GetCollectionID()?
	II. Sensitive detector�Class diagram

