
17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Programming Guide for Geant4 users

Geant4 Tutorial @ Japan 2007

Geant4 Collaboration

KEK/CRC

1

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Contents

G4-Types

G4cout, G4cerr

CLHEP Staffs

Units

 Vector and Rotation matrix

 Random number generation

C++ features in Geant4

 Inheritance

 Singleton

2

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4 TYPES

3

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Signature for Geant4 classes

Geant4 does not yet introduce namespace.

Instead, each class part of the Geant4 kernel has its name
beginning with the prefix G4.

 e.g., G4GeometryManager, G4Run, etc.

 to keep an homogeneous naming style

 according to the Geant4 coding style conventions

4

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4 types

Instead of the raw C types, G4 types are used within
the Geant4 code,
 in order to assure portability

 G4 types implement the right generic type for a given
architecture.
G4int

G4long

G4float

G4double

G4bool

G4complex

G4String (almost compatible with STL string)

5

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4cout, G4cerr

G4cout and G4cerr are ostream objects defined by
Geant4.
 G4endl is also provided.

 G4cout << ”Hello Geant4!” << G4endl;

Messages can be treated differently in (G)UIs other
than a command line terminal.
 The user should not use std::cout, etc.

 Ordinary file I/O is OK.

6

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

CLHEP STAFFS

Unit system

Vector and Rotation matrix

Random number generation

7

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Unit system

All variables should be given with their units defined in
“SystemOfUnits.h” of CLHEP.

Each hard-coded number must be multiplied by its proper unit.
 G4double radius = 10.0 * cm;
 G4double kineticE = 1.0 * GeV;

To get a number, it must be divided by a proper unit.
 G4cout << eDep / MeV << “ [MeV]” << G4endl;

By this unit system, source code becomes more readable and
importing / exporting physical quantities becomes
straightforward.
 For particular application, user can change the internal unit to suitable

alternative unit without affecting to the result.
8

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Typedefs to CLHEP classes

Typedefs to the corresponding classes of the CLHEP

G4TwoVector, G4ThreeVector, G4RotationMatrix, G4LorentzVector and
G4LorentzRotation
 Vector classes: defining 3-component (x,y,z) vector entities, rotation of such

objects as 3x3 matrices, 4-component (x,y,z,t) vector entities and their
rotation as 4x4 matrices.

G4Plane3D, G4Transform3D, G4Normal3D, G4Point3D, and G4Vector3D
 Geometrical classes: defining geometrical entities and transformations in 3D

space.

The namespace “CLHEP” is introduced in the CLHEP 2.0 versions.
 Geant4 supports both CLHEP 1.9.x and CLHEP 2.x.

 no needs for end users to declare “using namespace CLHEP”
 “using namespace CLHEP::XXX”s, are declared for CLHEP classes used in Geant4.

9

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

An example

G4ThreeVector avec = G4ThreeVector(1., 0., 0.);

avec.mag(); // return 1.

avec.rotateZ(90.*deg) ; // return (0., 1., 0.)

G4ThreeVector avec = G4ThreeVector(1., 0., 0.);

G4RotationMatrix arotM= G4RotationMatrix; // unit matrix

arotM.rotateZ(30.*deg);

// transformation matrix (active transformation)

G4Transform3D atransform= G4Transform3D(arotM, avec);

// 30 degree rotation around the Z axis + shift by (1.,0.,0.)

10

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Random number generation

Using the static generator defined in the
HepRandom class:
 Random values are shot using static methods shoot()

defined for each distribution (engine) class;
 G4double anumber = HepRandom::shoot();

HepJamesRandom as default engine.

 Users can set its properties by using the static
methods defined in the HepRandom class.
HepRandom::setTheSeed(1234567);

11

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Random engines

HepJamesRandom (default)

DRand48Engine

RandEngine

RanluxEngine

RanecuEngine

RanecuEngine theNewEngine;

HepRandom::setTheEngine(&theNewEngine);

12

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Random distributions

A distribution-class can collect different algorithms and different calling sequences
for each method to define distribution parameters or range-intervals;

RandFlat
 Class to shoot flat random values (integers or double) within a specified interval.
CLHEP::RandFlat::shoot(0., 1.);

RandExponential
 Class to shoot exponential distributed random values, given a mean.

RandGauss/RandGaussQ
 Class to shoot Gaussian distributed random values, given a mean (default = 0) or

specifying also a deviation (default = 1).
 CLHEP::RandGaussQ::shoot(mean, deviation);

RandPoisson
 Class to shoot numbers according to the Poisson distribution, given a mean.

13

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

C++ FEATURES IN GEANT4

Inheritance

Singleton

14

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

C++ features in Geant4

The most advanced features exposed to users:
 Inheritance
The feature that makes a programming language “Object

Oriented”

And which makes Geant4 versatile and extendable

 Singletons
The technique used for the many “managers” in Geant4

 A little of templates
The so-called “generic programming”

15

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Inheritance : the keyword virtual

A class is a “base class/abstract class/… ” if at least one of its methods is
declared “virtual”

Example in G4UserSteppingAction:
 virtual void UserSteppingAction(const G4Step*) { ; }
 In this case, it has a default implementation.
 You can create an object of this type in memory:

 G4UserSteppingAction dummySteppingAction;

Example in G4VUserDetectorConstruction:
 virtual G4VPhysicalVolume* Construct() = 0;
 It is a so-called “pure virtual method”:

 It does not propose a default implementation

 Creating such an object in memory is not possible
 Only pointers on it can be declared:
 G4VUserDetectorConstruction* detector;

16

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Inheritance in Geant4

Used in many places:
 Geometry:
 G4VSolid:

– Abstract interface to describe all geometrical shapes
– G4Box, G4Tubs, etc… are derived from G4VSolid

» (actually G4VCSGSolid, itself derived from G4VSolid)

 Physics:
 G4VProcess:

– Abstract interface common to all physical processes:
– Gamma conversion, multiple scattering, photo-fission, etc…

 Sensitivity:
 G4VSensitiveDetector, G4VHit, etc…

 User interfaces:
 Detector construction: G4VUserDetectorConstruction
 User actions: G4UserTrackingAction, G4UserSteppingAction,…
 …

17

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Syntax for inheritance

Example of detector construction, in example N03

In header file G4VUserDetectorConstruction.hh :
class G4VUserDetectorConstruction
{
…
public:
virtual G4VPhysicalVolume* Construct() = 0; // pure virtual!

…
};

In header file ExN03DectectorConstruction.hh :
class ExN03DectectorConstruction : public G4VUserDetectorConstruction
{
…
public:
virtual G4VPhysicalVolume* Construct(); // concrete implementation

…
};

18

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Inheritance: a few more things

Remember about publicity keywords:
 “public:” fields are accessible to all
 “protected:”

 These fields are accessible to daughter classes

 “private:”: fields accessible to the class only (and to “friend” classes)

Destructor of a base class is declared virtual.
 In general, to allow your stuff to be deleted when the destructor of

the base class is called.

Initialization
 A construction of a daughter class proceeds as follows:

 First the constructor of base class is called, then the constructor of the
daughter class is called

Daughter::Daughter()
: Parent()

{ … }
19



17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Singleton

A singleton is a class for which only one instance can be created in
memory.
 Most of manager classes are implemented as singleton in Geant4.
 G4RunManager, G4EventManager, G4TrackingManager, …

In most cases, the object is like global objects with a static getter
method.
 can be referred in any places
 static G4RunManager*

G4RunManager::GetRunManager();

Technique makes use of the keyword static.
 If in a class declaration a data member is declared static, all objects in

memory of that class will share the same data member

20

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Singleton: an example

In G4SDManager.hh:

class G4SDManager {

public:

static G4SDManager* GetSDMpointer();

…

private:

G4SDManager();

…

private:

static G4SDManager* fSDManager;

…

};

In G4SDManager.cc:

G4SDManager* G4SDManager::fSDManager = 0;

G4SDManager* G4SDManager::GetSDMpointer()

{

if (!fSDManager)

{

fSDManager = new G4SDManager();

}

return fSDManager;

}

21

• Since the constructor is private, only the class can create a G4SDManager

• The static pointer (and thus unique) is initialized to zero.

• Then, upon first call to GetSDMpointer(), the unique instance is created by

G4SDManager* manager = G4SDManager::GetSDMpointer();

