
17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Geometry II

Geant4 Collaboration

KEK/CRC

1

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Contents

Replicated volume

Parameterization

Advanced ways of placement

Region

Defining magnetic field

2

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

REPLICATED VOLUME

3

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Replicated volumes

The mother volume is completely filled with
replicas, all of which are the same size
(width) and shape.

Replication is allowed along:
 Cartesian axes (X, Y, Z) – slices are considered

perpendicular to the axis of replication
 Coordinate system at the center of each replica

 Radial axis (Rho) – cons/tubs sections centered
on the origin and un-rotated
 Coordinate system same as the mother

 Phi axis (Phi) – phi sections or wedges, of
cons/tubs form
 Coordinate system rotated such as that the X axis

bisects the angle made by each wedge

4

a daughter logical
volume to be
replicated

mother volume

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4PVReplica

G4PVReplica(const G4String &pName,

G4LogicalVolume *pLogical,

G4LogicalVolume *pMother,

const EAxis pAxis,

const G4int nReplicas,

const G4double width,

const G4double offset=0.);

offset may be used only for tube/cone segment

Features and restrictions:

 Replicas can be placed inside other replicas

 Normal placement volumes can be placed inside replicas, assuming no

intersection/overlaps with the mother volume or with other replicas

 No volume can be placed inside a radial replication

 Parameterised volumes cannot be placed inside a replica

5

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Replica - axis, width, offset

Cartesian axes - kXaxis, kYaxis, kZaxis

 Center of n-th daughter is given as

-width*(nReplicas-1)*0.5+n*width

 Offset shall not be used

Radial axis - kRaxis

 Center of n-th daughter is given as

width*(n+0.5)+offset

 Offset must be the inner radius of the mother

Phi axis - kPhi

 Center of n-th daughter is given as

width*(n+0.5)+offset

 Offset must be the starting angle of the mother

6

offset

width

offset

width

width

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4PVReplica : example

G4double tube_dPhi = 2.* M_PI * rad;

G4VSolid* tube =

new G4Tubs("tube",20*cm,50*cm,30*cm,0.,tube_dPhi);

G4LogicalVolume * tube_log =

new G4LogicalVolume(tube, Air, "tubeL", 0, 0, 0);

G4VPhysicalVolume* tube_phys =

new G4PVPlacement(0,G4ThreeVector(-200.*cm,0.,0.),

"tubeP", tube_log, world_phys, false, 0);

G4double divided_tube_dPhi = tube_dPhi/6.;

G4VSolid* div_tube =

new G4Tubs("div_tube", 20*cm, 50*cm, 30*cm,

-divided_tube_dPhi/2., divided_tube_dPhi);

G4LogicalVolume* div_tube_log =

new G4LogicalVolume(div_tube,Pb,"div_tubeL",0,0,0);

G4VPhysicalVolume* div_tube_phys =

new G4PVReplica("div_tube_phys", div_tube_log,

tube_log, kPhi, 6, divided_tube_dPhi);

7

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

PARAMETERIZED VOLUME

8

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4PVParameterised

G4PVParameterised(const G4String& pName,

G4LogicalVolume* pLogical,

G4LogicalVolume* pMother,

const EAxis pAxis,

const G4int nReplicas,

G4VPVParameterisation *pParam

G4bool pSurfChk=false);

Replicates the volume nReplicas times using the parameterization pParam,
within the mother volume pMother

pAxis is a suggestion to the navigator along which Cartesian axis replication of

parameterized volumes dominates.

 kXAxis, kYAxis, kZAxis : one-dimensional optimization

 kUndefined : three-dimensional optimization

9

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Parameterized Physical Volumes

User should implement a class derived from G4VPVParameterisation
and define the followings as a function of copy number

 where it is positioned (transformation, rotation)

Optional:

 the size of the solid (dimensions)

 the type of the solid, material, sensitivity, vis attributes

Limitations:

 Applies to simple CSG solids only

 Granddaughter volumes allowed only for special cases

Typical use-cases

 Complex detectors with large repetition of volumes, regular or
irregular

10

0
1

2

3

6

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4PVParameterized : example

G4VSolid* solidChamber =

new G4Box("chamber", 100*cm, 100*cm, 10*cm);

G4LogicalVolume* logicChamber =

new G4LogicalVolume

(solidChamber, ChamberMater, "Chamber", 0, 0, 0);

G4VPVParameterisation* chamberParam =

new ChamberParameterisation();

G4VPhysicalVolume* physChamber =

new G4PVParameterised("Chamber", logicChamber,

logicMother, kZAxis, NbOfChambers, chamberParam);

11

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4VPVParameterisation : example

class ChamberParameterisation : public G4VPVParameterisation

{

public:

ChamberParameterisation();

virtual ~ChamberParameterisation();

virtual void ComputeTransformation // position, rotation

(const G4int copyNo, G4VPhysicalVolume* physVol) const;

virtual void ComputeDimensions // size

(G4Box& trackerLayer, const G4int copyNo,

const G4VPhysicalVolume* physVol) const;

virtual G4VSolid* ComputeSolid // shape

(const G4int copyNo, G4VPhysicalVolume* physVol);

virtual G4Material* ComputeMaterial // material, sensitivity, visAtt

(const G4int copyNo, G4VPhysicalVolume* physVol,

const G4VTouchable *parentTouch=0);

// G4VTouchable should not be used for ordinary parameterization

};

12

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4VPVParameterisation : example

void ChamberParameterisation::ComputeTransformation

(const G4int copyNo, G4VPhysicalVolume* physVol) const

{

G4double Xposition = … // w.r.t. copyNo

G4ThreeVector origin(Xposition,Yposition,Zposition);

physVol->SetTranslation(origin);

physVol->SetRotation(0);

}

void ChamberParameterisation::ComputeDimensions

(G4Box& trackerChamber, const G4int copyNo,

const G4VPhysicalVolume* physVol) const

{

G4double XhalfLength = … // w.r.t. copyNo

trackerChamber.SetXHalfLength(XhalfLength);

trackerChamber.SetYHalfLength(YhalfLength);

trackerChamber.SetZHalfLength(ZHalfLength);

}

13

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4VPVParameterisation : example

G4VSolid* ChamberParameterisation::ComputeSolid

(const G4int copyNo, G4VPhysicalVolume* physVol)
{
G4VSolid* solid;
if(copyNo == …) solid = myBox;
else if(copyNo == …) solid = myTubs;
…
return solid;

}

G4Material* ComputeMaterial // material, sensitivity, visAtt

(const G4int copyNo, G4VPhysicalVolume* physVol,

const G4VTouchable *parentTouch=0);
{
G4Material* mat;
if(copyNo == …)
{
mat = material1;
physVol->GetLogicalVolume()->SetVisAttributes(att1);

}
…
return mat;

}

14

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Nested parameterization
 Suppose your geometry has three-dimensional regular reputation of same shape and

size of volumes without gap between volumes. And material of such volumes are

changing according to the position.

 E.g. voxels made by CT Scan data (DICOM)

 Instead of direct three-dimensional parameterized volume,

use replicas for the first and second axes sequentially, and then use one-dimensional

parameterization along the third axis.

 It requires much less memory for geometry optimization and gives much faster

navigation for ultra-large number of voxels.

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

ADVANCED WAYS OF PLACEMENT

Divisions

Assembly volumes

Reflected volumes

16

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4PVDivision

G4PVDivision is a special kind of G4PVParameterised.

 G4VPVParameterisation is automatically generated according to the

parameters given in G4PVDivision.

G4PVDivision is similar to G4PVReplica but

 It allows gaps between mother and daughter volumes

 also allow gaps between daughters, and also gaps on side walls.

Shape of all daughter volumes must be same shape as the mother volume.

 G4VSolid (to be assigned to the daughter logical volume) must be the

same type, but different object.

Replication must be aligned along one axis.

If your geometry does not have gaps, use G4Replica.

 For identical geometry, navigation of G4Replica is faster.

mother volume

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4PVDivision - 1

G4PVDivision(const G4String& pName,

G4LogicalVolume* pDaughterLogical,

G4LogicalVolume* pMotherLogical,

const EAxis pAxis,

const G4int nDivisions, // number of division is given

const G4double offset);

The size (width) of the daughter volume is calculated as

((size of mother) - offset) / nDivisions

18

nDivisions

offset

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4PVDivision - 2

G4PVDivision(const G4String& pName,

G4LogicalVolume* pDaughterLogical,

G4LogicalVolume* pMotherLogical,

const EAxis pAxis,

const G4double width, // width of daughter volume is given

const G4double offset);

The number of daughter volumes is calculated as

int(((size of mother) - offset) / width)

 As many daughters as width and offset allow

19

offset
width

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4PVDivision - 3

G4PVDivision(const G4String& pName,

G4LogicalVolume* pDaughterLogical,

G4LogicalVolume* pMotherLogical,

const EAxis pAxis,

const G4int nDivisions,

const G4double width, // both number of division and width are given

const G4double offset);

nDivisions daughters of width thickness

20

nDivisions

width
offset

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4PVDivision

G4PVDivision currently supports following shapes / axes.

 G4Box : kXAxis, kYAxis, kZAxis

 G4Tubs : kRho, kPhi, kZAxis

 G4Cons : kRho, kPhi, kZAxis

 G4Trd : kXAxis, kYAxis, kZAxis

 G4Para : kXAxis, kYAxis, kZAxis

 G4Polycone : kRho, kPhi, kZAxis

 kZAxis - the number of divisions has to be the same as solid sections, (i.e.
numZPlanes-1), the width will not be taken into account.

 G4Polyhedra : kRho, kPhi, kZAxis

 kPhi - the number of divisions has to be the same as solid sides, (i.e. numSides), the
width will not be taken into account.

 kZAxis - the number of divisions has to be the same as solid sections, (i.e.
numZPlanes-1), the width will not be taken into account.

In the case of division along kRho of G4Cons, G4Polycone, G4Polyhedra, if width is provided, it is
taken as the width at the -Z radius; the width at other radii will be scaled to this one.

21

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Grouping volumes

To represent a regular pattern of positioned volumes, composing a more or less complex

structure

 structures which are hard to describe with simple replicas or parameterised volumes

 structures which may consist of different shapes

 Too densely positioned to utilize a mother volume

Assembly volume

 acts as an envelope for its daughter volumes

 its role is over once its logical volume has been placed

 daughter physical volumes become independent copies in the final structure

Participating daughter logical volumes are treated as triplets

 logical volume

 translation w.r.t. envelop

 rotation w.r.t. envelop

22

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Reflecting solids

G4ReflectedSolid (derived from G4VSolid)

 Utility class representing a solid shifted from its original reference frame to a new
mirror symmetric one

 The reflection (G4Reflect[X/Y/Z]3D) is applied as a decomposition into rotation and
translation

G4ReflectionFactory

 Singleton object using G4ReflectedSolid for generating placements of reflected
volumes

Reflections are currently limited to simple CSG solids.

 will be extended soon to all solids

 Let's take an example of a pair of
mirror symmetric volumes.

 Such geometry cannot be made by
parallel transformation

or 180 degree rotation.

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

REGION

24

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Region

A region may have its unique

 Production thresholds (cuts)

 If a region in the mass geometry does not have its own production thresholds,
those of the default region are used (i.e., may not be those of the parent region).

 User limits

 You can set user limits directly to logical volume as well. If both logical volume
and associated region have user limits, those of logical volume wins.

 User region information

 E.g. to implement a fast Boolean method to identify the nature of the region.

 Fast simulation manager

 Shower envelope

 Regional user stepping action (new with version 9.0)

Please note :

 World logical volume is recognized as the default region. User is not allowed to define

a region to the world logical volume.

25

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Root logical volume

A logical volume can be a region. More than
one logical volumes may belong to a
region.

A region is a part of the geometrical hierarchy,
i.e. a set of geometry volumes, typically of
a sub-system.

A logical volume becomes a root logical
volume once a region is assigned to it.

 All daughter volumes belonging to the
root logical volume share the same
region, unless a daughter volume itself
becomes to another root.

Important restriction :

 No logical volume can be shared by
more than one regions, regardless of
root volume or not.

26

World Volume - Default Region

Root logical - Region A

Root logical

- Region B

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

G4Region

A region is instantiated and defined by

G4Region* aRegion = new G4Region(“region_name”);

aRegion->AddRootLogicalVolume(aLogicalVolume);

 Region propagates down to all geometrical hierarchy until the bottom or another root

logical volume.

Production thresholds (cuts) can be assigned to a region by

G4Region* aRegion

= G4RegionStore::GetInstance()->GetRegion(“region_name”);

G4ProductionCuts* cuts = new G4ProductionCuts;

cuts->SetProductionCut(cutValue);

aRegion->SetProductionCuts(cuts);

27

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

DEFINING A MAGNETIC FIELD

28

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Magnetic field (1)

Create your Magnetic field class

 Uniform field :

 Use an object of the G4UniformMagField class

G4MagneticField* magField =

new G4UniformMagField(G4ThreeVector(1.*Tesla,0.,0.);

 Non-uniform field :

 Create your own concrete class derived from G4MagneticField and

implement GetFieldValuemethod.

void MyField::GetFieldValue(

const double Point[4], double *field) const

 Point[0..2] are position in global coordinate system, Point[3] is time

 field[0..2] are returning magnetic field

29

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Magnetic field (2)

Tell Geant4 to use your field

1. Find the global Field Manager

G4FieldManager* globalFieldMgr =

G4TransportationManager::GetTransportationManager()

->GetFieldManager();

2. Set the field for this FieldManager,

globalFieldMgr->SetDetectorField(magField);

3. and create a Chord Finder.

globalFieldMgr->CreateChordFinder(magField);

/example/novice/N04/ExN04 is a good starting point

30

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Global and local fields

One field manager is associated with the ‘world’ and it is set in G4TransportationManager

Other volumes can override this

 An alternative field manager can be associated with any logical volume

 The field must accept position in global coordinates and return field in global

coordinates

 By default this is propagated to all its daughter volumes

G4FieldManager* localFieldMgr

= new G4FieldManager(magField);

logVolume->setFieldManager(localFieldMgr, true);

where ‘true’ makes it push the field to all the volumes it contains, unless a daughter

has its own field manager.

Customizing the field propagation classes

 Choosing an appropriate stepper for your field

 Setting precision parameters

31

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Field integration

In order to propagate a particle inside a field, we solve the equation of
motion of the particle in the field.

We use a Runge-Kutta method for the integration of the ordinary
differential equations of motion.
 Several Runge-Kutta ‘steppers’ are available.

In specific cases other solvers can also be used:
 In a uniform field, using the analytical solution.
 In a smooth but varying field, with RK+helix.

Using the method to calculate the track's motion in a field, Geant4 breaks
up this curved path into linear chord segments.

32

‘Tracking’ Step
Chords

Real Trajectory

17-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 200717-19 Oct, 2007 Geant4 Tutorial @ Japan 2007

Tracking in field

We use the chords to interrogate G4Navigator, to see
whether the track has crossed a volume boundary.
 One tracking step can create several chords.
 Users can set the accuracy of the volume intersection,
 By setting a parameter called the “miss distance”
 It is a measure of the error in whether the approximate track

intersects a volume.
 It is quite expensive in CPU performance to set too small “miss

distance”.

33
"miss distance"

‘Tracking’ Step
Chords

Real Trajectory

